联合图像最优特征提取及改进RBF神经网络的苹果质量估计
CSTR:
作者:
作者单位:

(1. 山西药科职业学院,山西 太原 030006;2. 山西农业大学,山西 太原 030031;3. 太原科技大学,山西 太原 030024)

作者简介:

赵敏(1981—),女,山西药科职业学院副教授,硕士。E-mail:nhaoqe@126.com

通讯作者:

中图分类号:

基金项目:

山西省教育科学规划课题(编号:GH-220552)


Apple weight estimation based on joint image optimal feature extraction and improved RBF neural network
Author:
Affiliation:

(1. Shanxi Pharmaceutical Vocational College, Taiyuan, Shanxi 030006, China; 2. Shanxi Agricultural University, Taiyuan, Shanxi 030031, China; 3. Taiyuan University of Science and Technology, Taiyuan, Shanxi 030024, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:以阿克苏苹果为例,设计一种联合图像最优特征提取和改进RBF神经网络学习的苹果质量估计方法,以克服人工分级称重成本高、误差大的缺陷。方法:首先,建立苹果图像采集系统,得到苹果前景图像信息;其次,设计苹果图像特征集合最佳子集提取策略,将最佳子集提取过程转化为目标函数优化问题,并利用改进的离散蝗虫优化算法进行求解,从而得到最佳苹果图像特征子集;最后,构建基于RBF神经网络学习的苹果质量估计模型,将最佳特征子集作为网络输入,并采用蝗虫优化算法优化配置RBF神经网络超参数,从而实现对苹果质量的有效估计。结果:所提苹果质量估计方法精度更高,质量估计值平均相对误差率为1.23%。结论:该方法可以有效实现苹果质量预估,也能够推广应用到其他类似轴对称形状的水果质量估计。

    Abstract:

    Objective: Taking Aksu apples as an example, a joint image optimal feature extraction and improved RBF neural network learning apple weight estimation method is designed to overcome the high cost and large error of manual grading and weighing. Methods: Firstly, an apple image acquisition system was established to obtain apple foreground image information. Secondly, the optimal subset extraction strategy for apple image feature sets was designed, by transforming the process of extracting the optimal subset into an objective function optimization problem, and an improved discrete locust optimization algorithm was designed to obtain the optimal apple image feature subset. Finally, a weight estimation model for apples based on RBF neural network learning was constructed, with the optimal feature subset as network input. The locust optimization algorithm was used to optimize the configuration of RBF neural network hyperparameters, to achieve effective estimation of apple weight. Results: The proposed apple weight estimation method had higher accuracy, with an average relative error rate of 1.23% for weight estimation. Conclusion: This method can effectively achieve apple weight estimation and can also be applied to other fruits with similar axisymmetric shapes for weight estimation.

    参考文献
    相似文献
    引证文献
引用本文

赵 敏,王成荣,李 苒.联合图像最优特征提取及改进RBF神经网络的苹果质量估计[J].食品与机械,2024,41(2):125-130,183.
ZHAO Min, WANG Chengrong, LI Run. Apple weight estimation based on joint image optimal feature extraction and improved RBF neural network[J]. Food & Machinery,2024,41(2):125-130,183.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-09-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2024-03-27
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。