基于改进Faster R-CNN的食品包装缺陷检测
CSTR:
作者:
作者单位:

(湖北工业大学机械工程学院,湖北 武汉 430068)

作者简介:

夏军勇(1976—),男,湖北工业大学教授级高工,硕士生导师,博士。E-mail:20171013@hbut.edu.cn

通讯作者:

中图分类号:

基金项目:

湖北省科技创新人才计划(编号:2023DJCO68)


Food packaging defect detection by improved network model of Faster R-CNN
Author:
Affiliation:

(School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:对纸质包装盒缺陷进行准确的识别与定位。方法:应用改进Faster R-CNN的网络模型自动对包装盒缺陷进行检测。对训练集图片进行数据增强并添加噪声,提升模型的训练精度和鲁棒性;将特征提取网络替换为ResNet50,并融合特征金字塔网络(FPN),提高模型多尺度检测的能力;使用K-means++对数据集中缺陷尺度进行聚类,优化锚框方案。结果:改进后的Faster R-CNN模型在测试集上的平均准确率(AP)达到93.9%,检测速度达到8.65帧/s。结论:应用改进的Faster R-CNN模型能够有效检测出包装盒缺陷并定位,可应用于包装盒缺陷的自动检测与分拣。

    Abstract:

    Objective: Accurate identification and location of paper packaging box defects. Methods: The improved network model of Faster R-CNN was applied to automatically detect box defects. The data of the training set picture was enhanced and noise was added to improve the training accuracy and robustness of the model. The feature extraction network was replaced with ResNet50, and the feature pyramid network (FPN) was fused to improve the multi-scale detection ability of the model. K-means++ was used to cluster the defect scale in the dataset and optimize the anchor box scheme. Results: The average accuracy (AP) of the improved Faster R-CNN model on the test set reached 93.9%, and the detection speed reached 8.65 f/s. Conclusion: The improved Faster R-CNN model can effectively detect and locate box defects, which can be applied to the automatic detection and sorting of box defects.

    参考文献
    相似文献
    引证文献
引用本文

夏军勇,王康宇,周宏娣.基于改进Faster R-CNN的食品包装缺陷检测[J].食品与机械,2023,39(11):131-136,151.
XIA Junyong, WANG Kangyu, ZHOU Hongdi. Food packaging defect detection by improved network model of Faster R-CNN[J]. Food & Machinery,2023,39(11):131-136,151.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-26
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。