基于近红外光谱的SSA-RELM的菠萝含水率快速检测
CSTR:
作者:
作者单位:

(1. 郑州财税金融职业学院,河南 郑州 450000;2. 河南科技大学,河南 洛阳 471000;3. 郑州大学,河南 郑州 450001)

作者简介:

赵艳莉(1965—),女,郑州财税金融职业学院副教授。E-mail:meetzyl@163.com

通讯作者:

中图分类号:

基金项目:

河南省重点研发与推广专项支持项目(编号:20HN91405);河南省自然科学基金项目(编号:2210016)


Rapid detection of moisture content of pineapple based on near infrared spectroscopy and SSA-RELM
Author:
Affiliation:

(1. Zhengzhou Vocational College of Finance and Taxation, Zhengzhou, Henan 450000, China; 2. Henan University of Science and Technology, Luoyang, Henan 471000, China; 3. Zhengzhou University, Zhengzhou, Henan 450001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:建立快速无损检测菠萝含水率的方法。方法:提出一种基于连续投影法的特征波长选择和麻雀搜索算法(SSA)优化正则化极限学习机(RELM)的菠萝含水率检测模型。针对菠萝近红外光谱数据具有维度高、冗余信息多的特点,分别对比连续投影法、主成分分析法和全波段等筛选特征波长的结果,确定菠萝近红外光谱特征波长筛选方法;针对RELM模型性能受其输入层权值和隐含层偏置的影响,运用麻雀搜索算法优化RELM模型的输入层权值和隐含层偏置,提出一种基于麻雀搜索算法改进正则化极限学习机的菠萝含水率检测模型。结果:与遗传算法改进正则化极限学习机(GA-RELM)、粒子群算法改进正则化极限学习机(PSO-RELM)和RELM相比,基于麻雀算法改进正则化极限学习机(SSA-RELM)的菠萝含水率检测模型的检测精度最高。结论:麻雀搜索算法优化RELM模型可以有效提高RELM模型的菠萝含水率检测精度。

    Abstract:

    Objective: A method for a fast and non-destructive detection of pineapple moisture content was established. Methods: A novel detection model of pineapple moisture content was proposed based on continuous projection feature wavelength selection and Sparrow search algorithm. Firstly, according to the characteristic of pineapple NIR data with high dimension and redundant information, the results of feature wavelength selection such as successive projections algorithm, principal component analysis and full-band were compared, the selection method of characteristic wavelength of pineapple near infrared spectrum was determined. Secondly, considering that the performance of RELM model was affected by the selection of input layer weight and hidden layer bias, the sparrow search algorithm was used to optimize the input layer weight and hidden layer bias of RELM model, a novel pineapple moisture content detection model based on RELM model improved by sparrow search algorithm was proposed. Results: compared with GA-RELM, PSO-RELM and RELM, the detection model based on SSA-RELM had the highest detection accuracy. Conclusion: RELM model is optimized by sparrow search algorithm can effectively improve the detection accuracy of RELM model .

    参考文献
    相似文献
    引证文献
引用本文

赵艳莉,赵 倩,李志强.基于近红外光谱的SSA-RELM的菠萝含水率快速检测[J].食品与机械,2023,39(11):79-86.
ZHAO Yanli, ZHAO Qian, LI Zhiqiang. Rapid detection of moisture content of pineapple based on near infrared spectroscopy and SSA-RELM[J]. Food & Machinery,2023,39(11):79-86.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-16
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-12-26
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。