基于支持向量机和压力传感器的水果分类系统
CSTR:
作者:
作者单位:

(1. 濮阳医学高等专科学校,河南 濮阳 457000;2. 山东农业大学,山东 泰安 271018;3. 河南农业大学,河南 郑州 450002;4. 河南大学,河南 郑州 450046)

作者简介:

王菲菲(1987—),女,濮阳医学高等专科学校讲师,硕士。E-mail:feifeiwang_0045@126.com

通讯作者:

中图分类号:

基金项目:

河南省高等学校重点科研项目(编号:22B110010)


Fruit classification system based on the pressure sensor coupled with support vector machine
Author:
Affiliation:

(1. Puyang Medical College, Puyang, Henan 457000, China; 2. Shandong Agricultural University, Tai'an, Shandong 271018, China; 3. Henan Agricultural University, Zhengzhou, Henan 450002, China; 4. Henan University, Zhengzhou, Henan 450046, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高水果分类准确率并兼顾低计算成本和低传感器成本。方法:提出一种基于电容式压力传感器的水果分类系统,通过采用高斯核函数的支持向量机算法(高斯支持向量机算法)对水果进行分类。所采用的电容式压力传感器由薄铜片和一层乙酸乙烯酯制成,压力传感器被固定在模拟机械手的聚酰胺氨纶手套的拇指和食指上。获得的电容值以数字电平的形式表示,通过数据处理软件进行数据提取,采用核函数的支持向量机算法对电容数据进行处理,以确定水果的类别。结果:对11种水果的分类结果表明,采用高斯—支持向量机算法的智能手套能够实现水果的高准确率分类,且可根据实际需要在分类准确率、计算成本和低传感器成本之间权衡。结论:该系统可用于开发水果分类的电子系统,提升分类机械手的水果分类性能。

    Abstract:

    Objective: To improve fruit classification accuracy while considering low computational cost and low sensor cost. Methods: A fruit classification system based on capacitive pressure sensor was proposed. The system used support vector machine algorithm with a Gaussian kernel function (GKF-SVM) to classify fruits. The capacitive pressure sensors used were made of thin copper sheets and a layer of vinyl acetate, and these sensors were fixed to the thumb and index finger of a polyamide spandex glove that simulates a robotic hand. The obtained capacitance value was expressed in the form of digital level, and the data was extracted by data processing software, and the capacitance data was processed by SVM algorithm with kernel functions to determine the category of a fruit. Results: The classification results of 11 kinds of fruits in the designed classification system shown that the smart glove using GKF-SVM algorithm could achieve high accuracy classification of fruits, which could trade off between classification accuracy, calculation cost and low sensor cost according to actual fruit classification needs. Conclusion: The research results can be used to develop electronic systems for fruit classification to improve the fruit classification performance of classification manipulators.

    参考文献
    相似文献
    引证文献
引用本文

王菲菲,刘 彭,孙凤伟,等.基于支持向量机和压力传感器的水果分类系统[J].食品与机械,2023,39(9):83-88.
WANG Feifei, LIU Peng, SUN Fengwei, et al. Fruit classification system based on the pressure sensor coupled with support vector machine[J]. Food & Machinery,2023,39(9):83-88.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-30
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。