基于改进Faster R-CNN模型的水果分类识别
CSTR:
作者:
作者单位:

(1. 山西旅游职业学院,山西 太原 030031;2. 山西大学,山西 太原 030006;3. 山西农业大学,山西 太原 030031)

作者简介:

贾艳平(1978—),女,山西旅游职业学院讲师,硕士。E-mail: bchenx28@foxmail.com

通讯作者:

中图分类号:

基金项目:

山西省教育科学“十三五”规划课题(编号:GH-1921025)


Fruit identification using improved Faster R-CNN model
Author:
Affiliation:

(1. Shanxi Vocational College of Tourism, Taiyuan, Shanxi 030031, China; 2. Shanxi University, Taiyuan, Shanxi 030006, China; 3. Shanxi Agricultural University, Taiyuan, Shanxi 030031, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高水果类别识别准确率。方法:基于改进Faster R-CNN模型建立水果识别方法。使用正则化方法对高维参数进行权重衰减,以有效解决训练过程中可能出现的过拟合问题;在Faster R-CNN框架中添加两个损失函数:一个似然函数和一个正则化函数,以优化卷积层和池化层;以最小二乘法求解水果识别的目标函数;利用准确率、回召率、精度和F1分数对训练好的水果识别方法进行水果识别效果评估。结果:所提出的方法对水果识别的准确率、精度和回召率达到99.69%,0.996 8,0.994 8;与其他8种水果识别方法相比,所提出方法对水果识别的准确率、精度和回召率至少提高了0.91%,1.32%,0.51%。结论:该方法可准确识别水果种类。

    Abstract:

    Objective: To improve the identification accuracy of fruit categories. Methods: An identification method for fruit categories was established based on an improved Faster regional convolutional neural network (Faster R-CNN) model. Firstly, the regularization method was used to attenuate the weight of some high-dimensional parameters to effectively solve the over-fitting problem that may occur in the training process. Then, two loss functions, a likelihood function and a regularization function, were added to the Faster R-CNN framework to optimize the convolution layer and the pooling layer. Additionally, the least square method was utilized to solve the objective function of fruit recognition. Finally, the accuracy, recall rate, precision and F1 score were used to evaluate the fruit identification effect of the trained fruit identification method. Results: The accuracy, precision and recall rates of the proposed method for fruit identification reached 99.69%, 0.996 8 and 0.994 8, respectively. Compared with the other 10 fruit identification methods, the accuracy, precision and recall rate of the proposed method were at least 0.91%, 1.32% and 0.51% higher. Conclusion: The method can realize the accurate recognition of different categories of fruits.

    参考文献
    相似文献
    引证文献
引用本文

贾艳平,桑妍丽,李月茹.基于改进Faster R-CNN模型的水果分类识别[J].食品与机械,2023,39(8):129-135.
JIAN Yanping, SANG Yanli, LI Yueru. Fruit identification using improved Faster R-CNN model[J]. Food & Machinery,2023,39(8):129-135.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-02-03
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。