基于改进CNN和数据扩充的苹果表面缺陷检测
CSTR:
作者:
作者单位:

(1. 湖南商务职业技术学院,湖南 长沙 410205;2. 湖南财政经济学院,湖南 长沙 410205; 3. 湖北理工学院,湖北 黄石 435003;4. 武汉理工大学,湖北 武汉 430070)

作者简介:

皮卫(1981—),男,湖南商务职业技术学院高级工程师,硕士。E-mail:watcher8193@163.com

通讯作者:

中图分类号:

基金项目:

湖南省科学技术成果评审委员会课题项目(编号:XSP2023JYC038)


Apple surface defect detection based on improved CNN and data augmentation
Author:
Affiliation:

(1. Hunan Vocational College of Commerce, Changsha, Hunan 410205, China; 2. Hunan University of Finance and Economics, Changsha, Hunan 410205, China; 3. Hubei Polytechnic University, Huangshi, Hubei 435003, China; 4. Wuhan University of Technology, Wuhan, Hubei 430070, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高苹果表面缺陷的检测准确率和效率。方法:基于改进卷积神经网络(CNN)和数据扩充建立苹果表面缺陷检测方法。改建CNN的拓扑结构,并将其用于苹果表面缺陷检测;利用条件生成对抗网络,合成表面无缺陷和有缺陷苹果图像,实现图像数据扩充和提高改进CNN的苹果表面缺陷的识别性能;通过模型剪枝,合理权衡苹果表面缺陷的检测准确率、检测时间及节能限制,以提高所提方法的实用性。结果:当改进CNN中的解释层选用2 048个解释性神经元时,平均检测准确率最高;条件生成对抗网络增强了苹果图像数据集的多样性;随着增强图像数在测试数据集中占比的增加,所提方法对苹果表面缺陷的检测准确率不断升高;当剪枝后的模型尺寸占原始模型尺寸的百分比从100%降至50%时,可以以6.96%的准确率损失将苹果表面缺陷的检测效率提升1倍。结论:试验方法有望在苹果生产和加工过程中实现自动化缺陷检测。

    Abstract:

    Objective: Improve the detection accuracy and efficiency of apple surface defects. Methods: An detection method for apple surface defects was established based on an improved convolutional neural network (CNN) and data augmentation method. Firstly, the classical CNN was improved to detect apple surface defects. Then, using the conditional generation adversarial network, the image data of surface defect free and defective apples was augmented with synthetic apple images to improve the detection performance of the improved CNN for apple surface defects. Finally, by pruning the CNN model, the detection accuracy, detection speed and energy saving limits of apple surface defects were balanced reasonably to improve the practicability of the proposed method. Results: When 2 048 interpretive neurons were selected in the interpretation layer of the improved CNN, the average detection accuracy was the highest among the interpretive neuron number situations. Additionally, the diversity of the apple image data sets was enhanced with the synthetic apple images produced by the conditional generation adversarial network. In addition, the accuracy of the proposed method for detecting apple surface defects increased continuously with the increase of the proportion of the enhanced images in the test data set. When the ratio of the pruned model size to the original model size decreased from 100% to 50%, the detection efficiency of apple surface defects was doubled with 6.96% detection accuracy decreasing. Conclusion: This method is expected to realize the automatic defect detection in apple production and processing, and provide a reference for the developing of other fruit surface defect detection methods.

    参考文献
    相似文献
    引证文献
引用本文

皮 卫,屈喜龙,王绍成,等.基于改进CNN和数据扩充的苹果表面缺陷检测[J].食品与机械,2023,39(8):122-128,226.
PI Wei, QU Xilong, WANG Shaocheng, et al. Apple surface defect detection based on improved CNN and data augmentation[J]. Food & Machinery,2023,39(8):122-128,226.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。