基于机器视觉的透明包装袋真空封口纹理缺陷检测方法
CSTR:
作者:
作者单位:

(1. 天津科技大学机械工程学院,天津 300222;2. 天津市轻工与食品工程机械装备集成设计与在线监控实验室,天津 300222)

作者简介:

张宝胜,男,天津科技大学在读硕士研究生。

通讯作者:

周聪玲(1975—),女,天津科技大学副教授,博士。E-mail:zhoucling@tust.edu.cn

中图分类号:

基金项目:

天津市科技计划项目(编号:18ZXRHGX00020);天津市科技特派员项目(编号:19JCTPJC52100)


Method for detecting texture defect of vacuum seal of transparent packaging bag based on machine vision
Author:
Affiliation:

(1. Tianjin University of Science and Technology, Tianjin 300222, China; 2. School of Mechanical Engineering, Tianjin Light Industry and Food Engineering Machinery Equipment Integrated Design and Online Monitoring Laboratory, Tianjin 300222, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决由于目前在食品包装领域采用人工抽检方式导致的真空封口质检难以长时间连续作业,易发生漏检、错检,检测准确率稳定性不可靠等问题。方法:提出了一种基于机器视觉的透明包装袋真空封口纹理检测方法代替人工检测。利用ROI区域提取、仿射变换和局部二值化模式等算法进行图像预处理,凸显出纹理特征。在此基础之上,利用灰度共生矩阵分析“良好”和“缺陷”封口纹理图像特征设置灰度共生矩阵参数,将纹理特征的均匀性与共生灰度矩阵特征量相关联。最后,以灰度共生矩阵特征量作为SVM分类器的输入量,通过计算对封口缺陷进行识别与分类。结果:该在线检测方法对透明包装袋真空封口的缺陷检测结果与人工质量结果对比同一性高达97.5%。结论:该方法具备较高的检测准确率和较好的实用性,可满足在线检测的需求。

    Abstract:

    Objective: To solve the problems caused by the manual sampling inspection in the field of food packaging, such as difficult to operate continuously for a long time, easy to miss and wrong detection, and unreliable detection accuracy and stability. Methods: In this paper, a machine vision-based vacuum sealed texture detecting method for transparent packaging bag was proposed to replace manual detection. The image was preprocessed by algorithms such as ROI extraction, affine transformation and local binary pattern to highlight the texture features. On this basis, the gray level co-occurrence matrix was used to analyze the features of "good" and "defective" sealing texture images. The parameters of gray level co-occurrence matrix were set and the uniformity of texture features was associated with the feature quantity of the parameters of gray level co-occurrence matrix. Finally, the parameters of gray level co-occurrence matrix was used as the input of SVM classifier, and the sealing defects were identified and classified through calculation. Results: This online detection method compares the defect detection results of the vacuum sealing of transparent packaging bags with the manual quality results up to 97.5%. Conclusion: This method has high detection accuracy and good practicability, and can meet the needs of online detection.

    参考文献
    相似文献
    引证文献
引用本文

张宝胜,周聪玲,王永强.基于机器视觉的透明包装袋真空封口纹理缺陷检测方法[J].食品与机械,2023,39(7):111-118.
ZHANG Bao-sheng, ZHOU Cong-ling, WANG Yong-qiang. Method for detecting texture defect of vacuum seal of transparent packaging bag based on machine vision[J]. Food & Machinery,2023,39(7):111-118.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-08
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。