基于改进CNN的苹果缺陷检测方法研究
CSTR:
作者:
作者单位:

(1. 河南护理职业学院,河南 安阳 455000;2. 中国科学技术大学,安徽 合肥 230026;3. 郑州大学,河南 郑州 450006)

作者简介:

杜国真(1984—),男,河南护理职业学院讲师,学士。E-mail:dgz143@163.com

通讯作者:

中图分类号:

基金项目:

河南省高等学校青年骨干教师培养计划项目(编号:2016GGJS-285);河南省教育厅教学改革研究与实践项目(编号:豫教〔2023〕03010)


Research on apple defect detection method based on improved CNN
Author:
Affiliation:

(1. Henan Vocational College of Nursing, Anyang, Henan 455000, China; 2. University of Science and Technology of China, Hefei, Anhui 230026, China; 3. Zhengzhou University, Zhengzhou, Henan 450006, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决现有苹果缺陷检测方法存在的精度低、效率差等问题。方法:基于水果图像采集系统,提出一种改进的卷积神经网络用于苹果表面缺陷检测;引入深度可分离卷积代换原网络标准卷积,提高特征提取速度;引入Leaky ReLU激活函数代替ReLU激活函数,提高计算效率和精度;引入全局平均池化替换全连接层,降低网络模型的计算量;并在每层卷积后加入批量归一化层,通过试验与常规方法进行对比分析,验证其优越性。结果:与常规方法相比,所提方法在苹果缺陷检测中具有较高的检测准确率和速度,且模型参数量少,准确率达99.60%,检测速度(每秒帧数)达526,模型参数量为389 072。结论:该苹果缺陷检测方法能有效降低模型参数和检测时间,具有较高的准确率和速度。

    Abstract:

    Objective: To solve the problems of low accuracy and poor efficiency in existing apple defect detection methods. Methods: Based on a fruit image acquisition system, an improved convolutional neural network was proposed for detecting surface defects in apples. Deep separable convolution was Introduced to replace the original network standard convolution, to improve the speed of feature extraction. The Leaky ReLU activation function was introduced to replace the ReLU activation function to improve the calculation efficiency and accuracy. Global average pooling was introduced to replace the fully connected layer, to reduce the computational complexity of the network model. After each layer of convolution, a batch normalization layer was added, and its superiority was verified through comparative analysis between experiments and conventional methods. Results: Compared with conventional methods, the proposed method had higher detection accuracy and speed in apple defect detection, and had fewer model parameters, with an accuracy rate of 99.60%, a detection speed of 526 FPS, and a model parameter quantity of 389 072. Conclusion: This apple defect detection method can effectively reduce model parameters and detection time, with high accuracy and speed.

    参考文献
    相似文献
    引证文献
引用本文

杜国真,卢明星,季泽旭,等.基于改进CNN的苹果缺陷检测方法研究[J].食品与机械,2023,39(6):155-160.
DU Guo-zhen, LU Ming-xing, JI Ze-xu, et al. Research on apple defect detection method based on improved CNN[J]. Food & Machinery,2023,39(6):155-160.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。