基于机器视觉的水果分级系统
CSTR:
作者:
作者单位:

(1. 青岛大学自动化学院,山东 青岛 266071;2. 山东省工业控制技术重点实验室,山东 青岛 266071)

作者简介:

刘佳浩,男,青岛大学在读硕士研究生。

通讯作者:

高军伟(1972—),男,青岛大学教授,博士。E-mail:qdgao163@163.com

中图分类号:

基金项目:

山东省自然科学基金资助项目(编号:ZR2019MF063);山东省重点研发计划项目(编号:2017GGX10115)


Design of fruit grading system based on machine vision
Author:
Affiliation:

(1. College of Automation, Qingdao University, Qingdao, Shandong 266071, China;2. Shandong Provincial Key Laboratory of Industrial Control Technology, Qingdao, Shandong 266071, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决目前水果分级检测方法效率低、误检率高等问题。方法:以苹果为分拣对象,设计一个基于机器视觉的水果分级系统。对实时采集得到的苹果图像进行预处理,使用改进的Canny边缘检测算法进行边缘提取,通过最小外接圆法拟合边缘坐标得到苹果的横切面半径。将采集到的RGB图像转换为HSI图像,根据H分量范围计算红色区域比例,判断苹果的色泽度。统计区域像素点个数,分别求取苹果的面积和周长,计算出苹果的圆形度。结合苹果果径长度、色泽度和圆形度3个特征值对苹果进行综合分级。结果:50个苹果样本试验结果表明,水果分级系统和人工分拣测量的果径误差范围在±1.5 mm以内,样本颜色特征与苹果实际外观相符,圆度值的大小与实际形状优劣相符。结论:该系统满足实际生产中对于苹果分级的需求,有助于实现苹果品级的准确识别。

    Abstract:

    Objective: In order to solve the problems of low efficiency and high false detection rate of current fruit classification detection methods, a fruit classification system based on machine vision was designed with apples as the sorting object. Methods: The apple image collected in real time was preprocessed, the improved Canny edge detection algorithm was used to extract the edge, and the radius of the apple cross-section was obtained by fitting the edge coordinates with the minimum peripheral circle method. The acquired RGB image was converted to HSI image, and the proportion of red region is calculated according to the range of H component to determine the color of apple. Count the number of pixels in the area, and calculate the area and circumference of the apple respectively to calculate the roundness of the apple. Combined with three characteristic values of diameter length, color and roundness, apple was graded comprehensively. Results: Through the test of 50 apple samples, the error range of fruit diameter measured by the fruit grading system and manual sorting was within ±1.5 mm, the color characteristics of the samples were consistent with the actual appearance of the apple, and the result size of the roundness value was consistent with the actual shape. Conclusion: The system can meet the demand of apple classification in actual production and help to realize the accurate identification of apple grade.

    参考文献
    相似文献
    引证文献
引用本文

刘佳浩,高军伟,张炳星,等.基于机器视觉的水果分级系统[J].食品与机械,2023,39(6):112-118.
LIU Jia-hao, GAO Jun-wei, ZHANG Bing-xing, et al. Design of fruit grading system based on machine vision[J]. Food & Machinery,2023,39(6):112-118.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-26
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。