基于电子鼻的茶油掺伪定性和定量检测
CSTR:
作者:
作者单位:

(中南林业科技大学机电工程学院,湖南 长沙 410004)

作者简介:

蒋涵,男,中南林业科技大学在读硕士研究生。

通讯作者:

李大鹏(1983—),男,中南林业科技大学讲师,博士。E-mail: dapengli@csuft.edu.cn

中图分类号:

基金项目:

湖南省科技计划重点研发项目(编号:2022NK2048);湖南省自然科学基金杰出青年基金 (编号:2023JJ10099);湖南省林业杰青培养科研项目(编号:XLK202108-7);湖南省教育厅科学项目(编号:20A515)


Qualitative and quantitative detection of camellia oil adulteration based on electronic nose
Author:
Affiliation:

(School of Mechanical and Electrical Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:实现对茶油中掺入菜籽油、大豆油、玉米油的掺伪检测。方法:采用电子鼻检测平台对茶油中分别掺入不同比例菜籽油、大豆油、玉米油进行掺伪检测,运用线性判别分析(LDA)和支持向量机(SVM)进行茶油掺伪定性鉴别分析,并使用多层感知器(MLP)和偏最小二乘回归(PLSR)建立茶油掺伪定量预测模型。结果:最佳输入参数下的SVM对茶油掺伪鉴别准确率高于LDA,其平均精确率、平均召回率、平均F-分数分别为94.85%,96.11%,95.34%,比LDA的提高了5.17%,4.44%,5.29%;MLP对茶油掺伪比例预测结果优于PLSR,对于掺入菜籽油、大豆油、玉米油的茶油,MLP预测的决定系数分别为0.98,0.99,0.98,均方根误差分别为4.02%,1.45%,3.74%。结论:基于电子鼻平台建立的SVM茶油掺伪鉴别模型和MLP茶油掺伪比例预测模型可有效实现茶油的鉴伪。

    Abstract:

    Objective: This study aims to realize the adulteration detection of camellia oil mixed with rapeseed oil, soybean oil and corn oil. Methods: The electronic nose detection platform was used for the adulteration detection of camellia oil mixed with different proportion of rapeseed oil, soybean oil and corn oil. Firstly, the linear discriminant analysis (LDA) and support vector machine (SVM) were used for the qualitative identification of camellia oil adulteration. Then multilayer perceptron (MLP) and partial least squares regression (PLSR) were used to establish quantitative prediction models for camellia oil adulteration. Results: The accuracy of SVM for qualitative authentication was higher than that of LDA, and the average precision rate, average recall rate and average F1-score were 94.85%, 96.11% and 95.34%, respectively, which were 5.17%, 4.44% and 5.29% higher than those of LDA. For quantitative prediction, MLP outperforms PLSR. In particular, the determination coefficients of MLP were 0.98, 0.99 and 0.98, and the root mean square errors were 4.02%, 1.45% and 3.74%, respectively, for camellia oil mixed with rapeseed oil, soybean oil and corn oil. Conclusion: The SVM-based identification model and MLP-based prediction model can effectively detect oil adulteration by using electronic nose platform.

    参考文献
    相似文献
    引证文献
引用本文

蒋 涵,李大鹏,文 韬,等.基于电子鼻的茶油掺伪定性和定量检测[J].食品与机械,2023,39(4):65-70.
JIANG Han, LI Da-peng, WEN Tao, et al. Qualitative and quantitative detection of camellia oil adulteration based on electronic nose[J]. Food & Machinery,2023,39(4):65-70.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-14
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-06-05
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。