基于矿质元素指纹分析技术的烟叶产区判别
CSTR:
作者:
作者单位:

(1. 河南中烟工业有限责任公司技术中心,河南 郑州 450000;2. 云南省烟草农业科学研究院烟草行业烟草生物技术育种重点实验室,云南 昆明 650021;3. 郑州轻工业大学食品与生物工程学院,河南 郑州 450000;4. 云南省烟草质量监督检测站,云南 昆明 650106)

作者简介:

孙九喆,男,河南中烟工业有限责任公司高级工程师,硕士。

通讯作者:

杨金初(1987—),男,河南中烟工业有限责任公司高级工程师,硕士。E-mail: yjinchu@163.com张轲(1982—),男,云南省烟草质量监督检测站农艺师,博士。E-mail: swukirk@126.com

中图分类号:

基金项目:

云南省烟草专卖局(公司)重点项目(编号:2020530000241034);河南中烟工业有限责任公司科技计划项目(编号:ZW2015012)


Producing area discrimination of tobacco leaves based on mineral element fingerprinting technology
Author:
Affiliation:

(1. Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, Henan 450000, China; 2. Yunnan Academy of Tobacco Agricultural Sciences, Key Laboratory of Tobacco Biotechnological Breeding, Kunming, Yunnan 650021, China; 3. School of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450000, China; 4. Yunnan Tobacco Quality Inspection & Supervision Station, Kunming, Yunnan 650106, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探讨应用矿质元素指纹分析技术进行烟叶产区判别的可行性,筛选出可判别烟叶产区的有效指标,构建烟叶产区判别模型。方法:利用电感耦合等离子体—质谱法(ICP-MS)同时测定11个产地烟叶20种矿质元素含量,并对数据进行方差分析、聚类分析、主成分分析及判别分析。结果:16种元素含量在产地间差异显著,主成分分析得到6个主成分,其累计方差贡献率超过89%;应用逐步判别筛选出K、Mn、Se及Ba 4种元素指标,建立了西南烟区和长江中上游烟区的烟叶产区判别模型,该模型可对烟叶产区进行准确判别。结论:不同产地烟叶矿质元素含量差异显著,K、Mn、Se及Ba 4种元素是烟叶产区判别的重要指标,矿质元素指纹分析技术可用于烟叶产区判别。

    Abstract:

    Objective: This paper discusses the feasibility of using mineral element fingerprinting technology of to identify tobacco producing areas, screens out the effective indicators, and constructs the discrimination model of tobacco producing areas. Methods: The contents of 20 mineral elements in tobacco leaves from 11 producing areas were simultaneously determined by ICP-MS, and the data were analyzed by variance analysis, cluster analysis, principal component analysis and discriminant analysis. Results: The contents of 16 elements were significantly different among producing areas, and principal component analysis resulted in 6 principal components, with the cumulative variance contribution of 89.253%. Using linear discriminant analysis, four elementsmineral, K, Mn, Se and Ba, were screened as the effective indicators to discriminate the geographical origin of tobacco leaves. The established discriminant model could accurately distinguish tobacco leaf samples from different tobacco producing areas. Conclusion: Significant differences were showed in the contents of mineral elements in tobacco leaves from 11 producing areas. Four elements, K, Mn, Se and Ba, are important indicators for distinguishing tobacco producing areas. Mineral element fingerprinting technology can be used for distinguishing tobacco producing areas.

    参考文献
    相似文献
    引证文献
引用本文

孙九喆,童治军,李 萌,等.基于矿质元素指纹分析技术的烟叶产区判别[J].食品与机械,2023,39(3):23-28.
SUN Jiu-zhe, TONG Zhi-jun, LI Meng, et al. Producing area discrimination of tobacco leaves based on mineral element fingerprinting technology[J]. Food & Machinery,2023,39(3):23-28.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。