基于改进YOLOX模型的樱桃缺陷及分级检测
CSTR:
作者:
作者单位:

(1. 大连大学辽宁省北斗高精度位置服务技术工程实验室,辽宁 大连 116622;2. 大连大学大连市环境感知与智能控制重点实验室,辽宁 大连 116622)

作者简介:

刘敬宇,女,大连大学在读硕士研究生。

通讯作者:

裴悦琨(1985—),男,大连大学讲师,研究生导师,博士。E-mail:peiyuekun@126.com

中图分类号:

基金项目:

国家自然科学基金(编号:61601076)


Cherry defect and classification detection based on improved YOLOX model
Author:
Affiliation:

(1. Beidou High Precision Positioning Service Technology Engineering Laboratory of Liaoning Province, Dalian University, Dalian, Liaoning 116622, China; 2. Environment Sensing and Intelligent Control Key Laboratory of Dalian, Dalian University, Dalian, Liaoning 116622, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:实现工业化条件下樱桃的快速分级。方法:采用YOLOX网络对缺陷果进行检测,通过为特征金字塔网络设置适当的融合因子来提高不明显缺陷的检测精度,并将Focal Loss集成到损失函数中;使用YOLOX网络对完好果进行分级,引入注意力机制CBAM来加强网络特征提取。结果:樱桃表面缺陷的平均检测精度为97.59%,大小和颜色分级的平均检测精度为95.92%。结论:改进后的YOLOX网络可明显提升樱桃缺陷及分级检测的精度。

    Abstract:

    Objective: In order to expand the scope of cherry sales and achieve rapid grading of cherries under industrial conditions. Methods: Firstly, the YOLOX network was used to detect the defective fruit, in order to solve some problems where the defect was not obvious. The detection accuracy of the inconspicuous defect was improved by setting the appropriate fusion factor for the feature pyramid network, and in order to solve the problem of imbalance between various types of real samples, Focal Loss was integrated into the loss function. Then, the intact fruit was graded using the YOLOX network, and the attention mechanism CBAM was introduced to enhance the network feature extraction. Results: Experimental results showed that 97.59% of the mAP detected for cherry surface defects and 95.92% of the mAP of size and color grading. Conclusion: The accuracy of cherry defects and grading has been significantly improved by the improved YOLOX network.

    参考文献
    相似文献
    引证文献
引用本文

刘敬宇,裴悦琨,常志远,等.基于改进YOLOX模型的樱桃缺陷及分级检测[J].食品与机械,2023,39(1):139-145.
LIU Jing-yu, PEI Yue-kun, CHANG Zhi-yuan, et al. Cherry defect and classification detection based on improved YOLOX model[J]. Food & Machinery,2023,39(1):139-145.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-05-07
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-04-25
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。