基于温度修正和可见/近红外光谱的油茶籽含水率检测
CSTR:
作者:
作者单位:

作者简介:

汪志强,男,中南林业科技大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

湖南省科技计划重点研发项目(编号:2022NK2048);湖南省教育厅科学项目(编号:18B192,20A515);湖南省自然科学基金(编号:2020JJ4142)


Water content detection of Camellia oleifera seeds based on temperature correction and visible/near infrared spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决干燥时温度变化对可见/近红外光谱检测油茶籽含水率的影响,并提出一种基于温度修正的油茶籽含水率检测模型。方法:在不同温度下(50,60,70 ℃)进行干燥试验,采集光谱数据。通过获取不同温度下采集的光谱数据,分析温度对光谱影响的原因。对比3种光谱预处理方式,运用竞争性自适应重加权算法(CARS)和偏最小二乘回归算法(PLSR),建立60 ℃下的基准PLSR模型。并采用斜率/偏差法对50,70 ℃下的外部样本预测值进行修正。结果:50,70 ℃下,修正前和修正后的决定系数分别为0.729和0.848,0.763和0.862;相对分析误差RPD值分别为1.921和2.565,2.054和2.692。结论:修正模型可以有效提高预测精度,达到良好的预测效果,克服了温度的影响。

    Abstract:

    Objective: In order to solve the problem that temperature change during drying can detect the moisture content of Camellia oleifera seeds by visible/near infrared spectroscopy, a temperature modified Camellia oleifera seed moisture content detection model was proposed. Methods: Drying experiments were carried out at different temperatures (50,60,70 ℃) to collect spectral data. By acquiring the spectral data collected at different temperatures, the reasons why the temperature affected the spectrum were analyzed. Then, by comparing the three spectral preprocessing methods, using the Competitive Adaptive Reweighting(CARS)and Partial Least Squares Regression (PLSR) were used to establish the benchmark PLSR model at 60 ℃. Finally, the slope/bias method was used to correct the predicted values of external samples at 50 ℃ and 70 ℃, which greatly improved the precision and accuracy. Results: The coefficients of determination before and after correction at the two temperatures were 0.729 and 0.848, 0.763 and 0.862, respectively. The relative analytical error RPD values were 1.921 and 2.565, 2.054 and 2.692, respectively. Conclusion: The modified model could effectively improve the prediction accuracy, achieve good prediction effect, overcome the influence of temperature, and provide a new method to eliminate the influence of temperature when detecting the oil Camellia oleifera seed moisture content by visible/near infrared spectroscopy in the drying field.

    参考文献
    相似文献
    引证文献
引用本文

汪志强,李大鹏,刘强,等.基于温度修正和可见/近红外光谱的油茶籽含水率检测[J].食品与机械,2022,(12):127-132.
WANG Zhi-qiang, LI Da-peng, LIU Qiang, et al. Water content detection of Camellia oleifera seeds based on temperature correction and visible/near infrared spectroscopy[J]. Food & Machinery,2022,(12):127-132.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-28
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。