基于高光谱图像光谱变量和颜色特征的霉变玉米籽粒识别
CSTR:
作者:
作者单位:

作者简介:

李伟(1988—),男,淮安市职业教育教学研究室讲师。E-mail:lwpo235@21cn.com

通讯作者:

中图分类号:

基金项目:

国家科学基金面上项目(编号:5207729);江苏自然科学基金项目(编号:21JS12903)


Research on the identification of mildew maize kernels using spectral variables and color features of hyperspectral images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:准确识别霉变玉米籽粒。方法:基于高光谱图像光谱变量和颜色特征建立霉变玉米籽粒识别的新方法。先对玉米籽粒图像进行图像分割和光谱变量、颜色特征提取,并根据颜色特征生成颜色直方图;将光谱变量和颜色直方图特征组成特征集合;通过距离函数对特征集合中所有特征的分析确定霉变玉米籽粒所属类别。结果:所提方法对霉变玉米籽粒类别的最大平均识别偏差为1.12,最佳平均识别准确率为97.59%;与基于高光谱图像+随机蛙跳+极限学习机的方法、基于高光谱图像+稀疏自动编码器+卷积神经网络的方法、基于高光谱图像+蚁群优化+BP神经网络的方法相比,研究所提方法对霉变玉米籽粒类别的识别准确率明显提高。结论:该方法可实现被测玉米籽粒样品是否霉变以及霉变程度的准确判断。

    Abstract:

    Objective: To identify mildew maize kernels accurately. Methods: A novel method to identify mildew maize kernels using spectral variables and color characteristics of hyperspectral images. Firstly, image segmentation, spectral variables and color features extraction were carried out on maize kernel images. Then, color features of maize kernel images were utilized to generate color histograms. Additionally, spectral variables and color histogram features were combined into a feature set. Finally, the distance functions were used to analyze the features in this feature set to identify mildew maize kernels. Results: For the proposed method, the maximum average identification deviation and accuracy for the mildew maize kernels were 1.12 and 97.59%, respectively. Compared with the method based on hyperspectral images+random frog+extreme learning machine, the method using hyperspectral images+colony optimization + BP neural network, and the method based on hyperspectral images+sparse auto-encoders + convolutional neural network, the identification accuracies of mildew maize kernels were significantly improved by the proposed method. Conclusion: The developed method can accurately identify whether the corn grain samples are mildew and the mildew degree of the maize kernel samples.

    参考文献
    相似文献
    引证文献
引用本文

李伟,赵雪晴,刘强.基于高光谱图像光谱变量和颜色特征的霉变玉米籽粒识别[J].食品与机械,2022,(12):112-120.
LI Wei, ZHAO Xue-qing, LIU Qiang. Research on the identification of mildew maize kernels using spectral variables and color features of hyperspectral images[J]. Food & Machinery,2022,(12):112-120.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-28
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。