基于改进Tiny-YOLOv5l算法的串型番茄定位与计数
CSTR:
作者:
作者单位:

作者简介:

赵九霄,男,北京市农林科学院信息技术研究中心助理研究员,硕士

通讯作者:

中图分类号:

基金项目:

北京市科技计划(编号:Z201100008020013);北京市农林科学院院创新能力建设项目(编号:QNJJ202126,KJCX20200430)


Localization and counting of string tomatoes based on improved Tiny-YOLOv5l algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高串型番茄分拣效率,减少误检、错检。方法:采集串型番茄图像数据集,通过数据增强扩充数据并提高模型的泛化性能,将YOLOv5l框架内的Bottleneck层中的3×3卷积替换为改进的SVM-MHSA层,通过将MHSA中softmax分类函数替换为更适用于串型番茄的SVM分类函数;将检测框架中剩余3×3卷积替换为深度可分离卷积,引入随机纠正线性单元提高网络训练收敛速度。结果:改进后的Tiny-YOLOv5l模型可有效实现串型单果识别定位、整串果实计数,检测框损失率由1.48%降低至1.34%,目标损失率由1.98%降低至1.73%,置信度损失降低了1.4%,精度由97.36%提升至98.89%,召回率由97.35%提升至98.56%。结论:Tiny-YOLOv5l算法更加精准且兼具轻量化,面对遮挡、背景干扰、光照变化、虚化等挑战具有较高的识别准确率,可为产后串型番茄分拣人员提供准确的单果位置信息以及整串果实数量信息。

    Abstract:

    Objective: This study is to improve the sorting efficiency of string tomatoes, and solve its false detection and false detection. Methods: First, collect the image data set of string tomatoes, expand the data and improve the generalization performance of the model through data enhancement, and 3×3 convolution is replaced by improved SVM-MHSA layer. By replacing softmax classification function in MHSA with SVM classification function which is more suitable for string tomatoes, the detection accuracy of string tomatoes is enhanced. Secondly, the remaining 3×3 convolution is replaced by deep separable convolution to reduce the number of parameters and improve the operation efficiency. Finally, random correction linear unit is introduced to improve the convergence speed of network training. Results: the test results show that the improved tiny YOLOv5l model can effectively realize the string single fruit recognition and positioning and the whole string fruit counting. The detection frame loss rate is reduced from 1.48% to 1.34%, the target loss rate is reduced from 1.98% to 1.73%, the confidence loss is reduced by 1.4%, the accuracy is increased from 97.36% to 98.89%,and the recall rate is increased from 97.35% to 98.56%. Conclusion: The tiny YOLOv5l algorithm is more accurate and lightweight. It has a high recognition accuracy in the face of challenges such as occlusion, background interference, illumination change and virtualization, and provides accurate information on the location of single fruit and the quantity of the whole string of fruit for post natal string tomato sorters.

    参考文献
    相似文献
    引证文献
引用本文

赵九霄,张馨,史凯丽,等.基于改进Tiny-YOLOv5l算法的串型番茄定位与计数[J].食品与机械,2022,(12):79-86.
ZHAO Jiu-xiao, ZHANG Xin, SHI Kai-li, et al. Localization and counting of string tomatoes based on improved Tiny-YOLOv5l algorithm[J]. Food & Machinery,2022,(12):79-86.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-28
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。