改进的YOLOv5蛋类缺陷自动检测模型
CSTR:
作者:
作者单位:

作者简介:

姚学峰(1977—),男,沈阳职业技术学院副教授,硕士。E-mail:yaoball@163.com

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金项目(编号:20LN90102)


An improved automatic detection model for egg defection based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决现有蛋类缺陷图像自动检测方法存在的检测效率低、精度差等问题。方法:在蛋类检测系统的基础上,提出一种改进的YOLOv5自动检测模型。将轻量级网络MobileNetv3添加到YOLOv5模型中,以降低模型复杂度,删除颈部网络和输出端小目标检测。结果:与传统的控制方法相比,该方法能够更准确、高效地实现蛋类目标表面缺陷检测,复杂度降低了35%以上,单幅图像的检测时间为14.25 ms,检测准确率>95%,满足食品缺陷检测的需要。结论:改进的YOLOv5检测模型可以有效提高蛋类缺陷检测效率。

    Abstract:

    Objective: To solve the problems of low detection efficiency and poor accuracy of existing automatic detection methods for egg defect images. Methods: Based on the egg detection system, an improved YOLOv5 automatic detection model was proposed. Added the lightweight network MobileNetv3 to YOLOv5 model to reduce the complexity of the model, and deleted the neck network and small target detection at the output end. Results: Compared with the traditional control method, this method can detect the surface defects of egg targets more accurately and efficiently, with the complexity of more than 35% reducing, the detection time of a single image of 14.25 ms, and the detection accuracy rate over 95%, which meet the needs of food defect detection. Conclusion: The improved YOLOv5 detection model can effectively improve the detection efficiency of egg defects.

    参考文献
    相似文献
    引证文献
引用本文

姚学峰,李超.改进的YOLOv5蛋类缺陷自动检测模型[J].食品与机械,2022,(11):155-159,183.
YAO Xue-feng, LI Chao. An improved automatic detection model for egg defection based on YOLOv5[J]. Food & Machinery,2022,(11):155-159,183.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。