基于深度学习的香蕉成熟度自动分级
CSTR:
作者:
作者单位:

作者简介:

王灵敏,女,桂林理工大学南宁分校工程师,硕士

通讯作者:

中图分类号:

基金项目:

广西高校中青年教师科研基础能力提升项目(编号:2020KY36006)


Automatic classification of banana ripeness based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:快速、准确分类香蕉成熟度。方法:采集不同成熟度的香蕉图像并建立图库,利用多种神经网络作为分类器提取香蕉特征,通过迁移学习对香蕉6个成熟度等级进行分类,并对最适合进行香蕉成熟度分类的网络模型进行改进,设计简易香蕉成熟度实时检测界面,最后验证模型的可行性和实用性。结果:AlexNet模型最适合用于香蕉成熟度分类,准确率最高,可达到95.56%;通过修改其全连接层结构改进AlexNet模型,模型准确率再提升1.11%。结论:AlexNet模型可快速准确识别并分类不同成熟度的香蕉。

    Abstract:

    Objective: To classify banana ripeness quickly and accurately. Methods: Collect the bananas images of different maturity and establish gallery, using a variety of different neural networks as a classifier, banana feature extracting by migration study classifying banana six maturity level, access to the most suitable for banana maturity classification network model, network model, based on the improved and easily banana maturity real-time detection interface design, Finally, the feasibility and practicability of the model were verified. Results: AlexNet model was most suitable for banana maturity classification with the highest accuracy of 95.56%. AlexNet model was improved by modifying its full-connection layer structure, and the model accuracy was further improved by 1.11%. Conclusion: AlexNet model can quickly and accurately identify and classify bananas of different maturity.

    参考文献
    相似文献
    引证文献
引用本文

王灵敏,蒋瑜.基于深度学习的香蕉成熟度自动分级[J].食品与机械,2022,(11):149-154.
WANG Ling-min, JIANG Yu. Automatic classification of banana ripeness based on deep learning[J]. Food & Machinery,2022,(11):149-154.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。