基于深度学习的白酒酒花实时分类方法
CSTR:
作者:
作者单位:

作者简介:

刘智萍,男,华北电力大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

河北省自然基金研究项目(编号:F2018502080)


Real-time classification method for liquor hops based on deep learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决白酒传统摘酒方法“看花摘酒”的主观性和不稳定性,以及现有机器视觉酒花分类方法难以满足实时分类的问题。方法:轻量型YOLOv5以YOLOv5s作为初始模型,使用K-mean聚类的锚框取代默认锚框,以提高模型检测精度和稳定性,使用ShuffleNetV2网络替换YOLOv5s主干网络进行特征提取,以达到轻量化模型的目的,并增加CBAM注意力机制使模型更加关注酒花特征。结果:与YOLOv5s初始模型相比,轻量型YOLOv5模型占用内存减少92.5%,参数量减少93.7%,计算量降低63.4%,检测精度提升2.8%,FPS高达526。结论:轻量型YOLOv5降低了对硬件配置的要求,可以很好地实现酒花实时检测分类。

    Abstract:

    Objective: To solve the subjectivity and instability of the traditional Baijiu picking method " liquor-receiving according to liquor hop", and the problem that the existing machine vision hops classification method is difficult to meet the real-time classification. Methods: The lightweight YOLOv5 takes YOLOv5s as the initial model, uses the K-mean clustering anchor box to replace the default anchor box to improve the model detection accuracy and stability, uses the shufflenetv2 network to replace the YOLOv5s backbone network for feature extraction, so as to achieve the purpose of lightweight model, and adds the CBAM attention mechanism to make the model pay more attention to the characteristics of hops. Results: Compared with the initial YOLOv5s model, the memory occupied by the lightweight YOLOv5 model is reduced by 92.5%, the parameters are reduced by 93.7%, the calculation is reduced by 63.4%, the detection accuracy is improved by 2.8%, and the FPS is up to 526. Conclusion: The lightweight YOLOv5 reduces the requirements for hardware configuration and can well realize the real-time detection and classification of hops.

    参考文献
    相似文献
    引证文献
引用本文

刘智萍,崔克彬.基于深度学习的白酒酒花实时分类方法[J].食品与机械,2022,(11):111-116.
LIU Zhi-ping, CUI Ke-bin. Real-time classification method for liquor hops based on deep learning[J]. Food & Machinery,2022,(11):111-116.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-12-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。