基于线激光扫描的鱼类定量切段方法
CSTR:
作者:
作者单位:

作者简介:

马骏骁,男,大连工业大学在读硕士研究生.

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(编号:2018YFD0700905);辽宁省自然科学基金(编号:2020-MS-273);辽宁省教育厅项目(编号:LJKZ0542)


Research on quantitative fish segmentation method based on line laser scanning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:实现鱼类制品前处理加工鱼肉定量切段机械化.方法:利用线激光扫描得到的鱼体轮廓数据和鱼体重量随体长的分布数据,并据此构建鱼体定重切段和等重切段的定量化分切模型,通过试验验证方法的有效性和准确性.结果:鱼体重量分布模型的预测精度>91%;给定段重为10,15,20g时的平均绝对误差分别为0.16,0.38, 1.15g;给定段数为10,15,20段时的平均绝对误差分别为 2.44,1.35,0.67g.结论:定重切段时,切割误差随给定重量增大而提高;等重切割时,给定段数越少,切割误差越大,该方法可满足实际生产中定量切段加工精度要求.

    Abstract:

    Objective:To realize the mechanization of quantitative cutting of fish before processing fish products. Methods:Obtained the fish contour data by linear laser scanning, the distribution of fish body weight with body length was obtained. The quantitative cutting models of fish body with fixed weight and equal weight were constructed, and the validity and accuracy of the method were verified by experiments. Results:The results showed that the predicted curve of fish body weight distribution was close to the real distribution curve, the accuracy of 10 fish was above 91%. The mean absolute errors were 0.16, 0.38 and 1.15 g, respectively. For a given segment weight of 10, 15 and 20 g, the mean absolute errors of 10, 15 and 20 segments were 2.44, 1.35 and 0.67 g, respectively. Conclusion:The research results provide a feasible idea for quantitative segmentation processing of fish, and provide a theoretical reference for the development of intelligent fish processing machinery.

    参考文献
    相似文献
    引证文献
引用本文

马骏骁,龚泽,康家铭,等.基于线激光扫描的鱼类定量切段方法[J].食品与机械,2022,(10):87-92.
Ma Junxiao, Gong Ze, Kang Jiaming, et al. Research on quantitative fish segmentation method based on line laser scanning[J]. Food & Machinery,2022,(10):87-92.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-23
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。