基于图像处理的番茄重量预测
CSTR:
作者:
作者单位:

作者简介:

何婷婷,女,山西农业大学在读硕士研究生.

通讯作者:

中图分类号:

基金项目:

北京市科技计划项目(编号:Z201100008020013);云南重点研发计划项目(编号:202002AE090010);北京市农科学院创新能力建设项目(编号:KJCX20210402)


Tomato weight prediction based on image processing
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:建立一种基于图像处理的番茄重量检测方法以实现无接触式番茄重量检测。方法:通过图像处理得到番茄二值图像,使用像素统计法和最小外接矩形法提取番茄的几何特征与果重真实值进行相关性分析,建立以几何特征为参数的番茄重量检测回归模型。结果:与番茄真实尺寸对比,最小外接矩形法对番茄横、纵径测量误差在3%以内。除果形指数外,其他几何特征与番茄果重呈线性相关,且正面特征与果重的相关关系更显著。建立了3类共20个模型进行预测评估,以番茄正面投影面积与周长、一个侧面图像的投影面积和番茄横径为参数的多元回归模型准确率最高,回归系数为0.962,检测值平均相对误差为0.673%,平均绝对误差为1.425 g。结论:该模型适用于番茄及其他具有类似轴对称形状特征的水果或物品的重量检测。

    Abstract:

    Objective:A tomato weight detection method based on image processing was established to realize non-contact tomato weight detection. Methods:The binary image of tomato was obtained through image processing. The geometric features of tomato were extracted by pixel statistics and minimum circumscribed rectangle method, and correlation analysis was made between the characteristics and the real value of tomato weight, then the regression model of tomato weight detection with geometric features as parameters was established. Results:Compared with the real size of tomato, the measurement error of transverse and longitudinal diameter of Tomato by minimum external rectangle method was less than 3%. In addition to fruit shape index, other geometric characteristics were linearly correlated with tomato fruit weight, and the correlation between positive characteristics and fruit weight was more significant. Three types of 20 models were established for prediction and evaluation. The multiple regression model with the parameters of tomato front projection area and perimeter, projection area of a side image and tomato transverse diameter had the highest accuracy, the regression coefficient was 0.962, the average relative error of detection value was 0.673%, and the average absolute error was 1.425 g. Conclusion:The model is suitable for the weight detection of tomatoes and other fruits or articles with similar axisymmetric shape characteristics.

    参考文献
    相似文献
    引证文献
引用本文

何婷婷,李志伟,张馨,等.基于图像处理的番茄重量预测[J].食品与机械,2022,(10):17-23.
HE Ting-ting, LI Zhi-wei, ZHANG Xin, et al. Tomato weight prediction based on image processing[J]. Food & Machinery,2022,(10):17-23.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-11-23
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。