基于改进卷积神经网络的食品异物自动识别方法
CSTR:
作者:
作者单位:

作者简介:

邓阿琴(1980—),女,湖南环境生物职业技术学院副教授,硕士。E-mail:daq8591241@163.com

通讯作者:

中图分类号:

基金项目:

湖南省高等职业教育教学改革研究项目(编号:ZJGB2020271)


An automatic recognition method for food foreign matter based on improved convolutional Neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高食品中异物识别速度和精度。方法:在LeNet-5网络结构的基础上增加批量归一化层和Dropout层得到改进的CNN模型,利用此模型建立识别系统用于食品图像中异物自动识别。通过试验对所建模型性能进行分析。结果:与传统的模型相比,该模型具有更高的检测精度和更快的识别速度,食品异物的识别准确率为99.75%,识别时间仅为0.332 s。结论:建立的饺子图像异物识别模型具有较好的检测速度和识别精度。

    Abstract:

    Objective: Improve the speed and accuracy of foreign matter identification in food. Methods: Based on the LeNet-5 network structure, the improved CNN model was obtained by adding batch normalization layer and dropout layer. Using this model, a recognition system was established for the automatic recognition of foreign bodies in food images. The performance of the model was analyzed through experiments. Results: Compared with the traditional model, this model has higher detection accuracy and faster recognition speed. The recognition accuracy of food foreign bodies was 99.75% and the recognition time was only 0.332 s. Conclusion: The foreign object recognition model of dumpling image had good detection speed and recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

邓阿琴,胡平霞.基于改进卷积神经网络的食品异物自动识别方法[J].食品与机械,2022,38(7):133-137.
DENG A-qin, Hu Ping-xia. An automatic recognition method for food foreign matter based on improved convolutional Neural network[J]. Food & Machinery,2022,38(7):133-137.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-09-08
  • 出版日期:
文章二维码