基于多光谱特征分区的油桃品质分析算法
CSTR:
作者:
作者单位:

作者简介:

王杰(1985—),女,吉林建筑科技学院讲师,硕士。E-mail:wangjienuc@sina.com

通讯作者:

中图分类号:

基金项目:

国家自然科学基金青年项目(编号:61703056);吉林省优秀青年人才基金项目(编号:20190103154JH)


Nectarine quality analysis algorithm based on multi-spectral feature partition
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决基于光谱图像识别技术易受相近类型干扰,致使对被测物的种类与品质识别产生偏差的问题。方法:设计了可见光与近红外光的独立双通道光谱采集系统,通过控制不同特征区域的光谱范围与光谱分辨率,实现对特征波长位置的吸光度快速采集;构建了品质参数,给出了其关于光谱变化与样品质量的函数表达形式;根据测试样品的光谱分布特性,选择合适的特征波长位置,并通过主成分分析给出了种类与品质参数的解算依据。结果:采用CM-25D分光仪和FT-NIR分光仪获取了4种常见的油桃样本的可见与红外光谱,建立了以吸光度值与吸光度比值作为判别因子的最小二乘权值分析法,与传统线性比例分析法进行比较,该算法种类识别率均值为96.7%,归一化品质系数为0.892,识别能力均有所增强。结论:采用双通道光谱采集硬件结构配合基于权值分配的偏最小二乘算法,可以对光谱特征相近的油桃品种进行更好的分类与识别。

    Abstract:

    Objective: In order to solve the problem that the spectral image recognition technology is susceptible to interference from similar types, resulting in deviations in the identification of the type and quality of the measured object. Methods: An independent dual-channel spectral acquisition system for visible light and near-infrared light was designed. By controlling the spectral range and spectral resolution of different characteristic regions, the rapid acquisition of absorbance at the characteristic wavelength position was achieved. The function expression form of spectral change and sample quality was established. According to the spectral distribution characteristics of the test sample, the appropriate characteristic wavelength position was selected, and the calculation basis of the species and quality parameters was given by principal component analysis. Results: The visible and infrared spectra of four common nectarine samples were obtained by CM-25D spectrometer and FT-NIR spectrometer. Compared with the traditional linear proportional analysis method, the average recognition rate of the algorithm was 96.7%, the normalized quality coefficient was 0.892, and the recognition ability was enhanced. Conclusion: The dual-channel spectrum acquisition hardware structure and the partial least squares algorithm based on weight assignment can better classify and identify nectarine varieties with similar spectral characteristics.

    参考文献
    相似文献
    引证文献
引用本文

王杰.基于多光谱特征分区的油桃品质分析算法[J].食品与机械,2022,(5):133-137.
WANG Jie. Nectarine quality analysis algorithm based on multi-spectral feature partition[J]. Food & Machinery,2022,(5):133-137.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-30
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。