基于LSTM和IGA-BP的酒精度预测模型
CSTR:
作者:
作者单位:

作者简介:

张建华,男,河北工业大学教授,博士生导师,博士。

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(编号:2018YFB1306500);河北省重点研发计划项目(编号:21311801D);天津市智能制造重大专项(编号:19ZXZNGX00100);河北省高层次人才资助项目—博士后科研项目择优资助(编号:B2020003020)


Research on alcohol prediction model based on LSTM and IGA-BP
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决目前分段摘酒过程依赖人工“看花摘酒”,酒精度检测不准确的问题。方法:设计搭建基于酒精度建模的分段摘酒系统,研究采集音叉在不同模态不同浓度酒精溶液内的音叉频率值、音叉内置温度值,酒精溶液温度值和动态条件下泵转速值,基于最小均方算法(LMS)和长短期记忆网络(LSTM)实现音叉频率自适应滤波和动态补偿,基于改进遗传算法优化BP神经网络(IGA-BP)建立酒精度预测模型。结果:模型在迭代次数和预测精度上优于传统遗传算法优化BP神经网络和BP神经网络建立的酒精度预测模型,酒精度平均预测误差为0.381。结论:基于改进遗传算法优化BP神经网络(IGA-BP)建立酒精度数预测模型具有合理性。

    Abstract:

    Objective: In order to solve the problem of inaccurate detection of alcohol accuracy due to manual "flower picking" in the segmented liquor picking process. Methods: Designed and built a segmented liquor taking system based on alcohol accuracy modeling. The research collected tuning fork frequency values, tuning fork built-in temperature values, alcohol solution temperature values and pump speed values under dynamic conditions in different modes of alcohol solutions with different concentrations, implemented adaptive tuning fork frequency filtering and dynamic compensation based on least mean square algorithm (LMS) and long short-term memory network (LSTM), and built a liquor accuracy prediction model based on improved genetic algorithm optimized BP neural network (IGA-BP). Results: The model outperformed the traditional genetic algorithm optimized BP neural network and BP neural network in terms of the number of iterations and prediction accuracy, and the average prediction error of the alcoholic beverages was 0.381. Conclusion: which verifies the reasonableness of the model. In order to solve the limitations of the current manual "flower picking", a method is proposed to improve the accuracy of alcohol detection in the segmented liquor taking process.

    参考文献
    相似文献
    引证文献
引用本文

张建华,商建伟,王唱,等.基于LSTM和IGA-BP的酒精度预测模型[J].食品与机械,2022,(5):71-77.
ZHANG Jian-hua, SHANG Jian-wei, WANG Chang, et al. Research on alcohol prediction model based on LSTM and IGA-BP[J]. Food & Machinery,2022,(5):71-77.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-06-30
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。