改进深度置信网络的苹果内部品质评价
CSTR:
作者:
作者单位:

作者简介:

胡春艳(1981—),女,周口职业技术学院讲师。

通讯作者:

中图分类号:

基金项目:

河南省教育厅高等学校重点科研项目(编号:22A520052)


Evaluation of apple inner quality based on improved deep belief network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决苹果近红外光谱存在大量冗余信息和苹果内部品质评价精度较低的问题,提高苹果内部品质评价的精度。方法:提出一种连续投影法的特征波长筛选与灰狼优化算法改进深度置信网络(GWO-DBN)的苹果内部品质评价模型。针对苹果光谱数据具有维度高而复杂的特点,分别对比全波段和主成分分析法、连续投影法等筛选特征波长的结果,确定苹果光谱特征波长筛选方法;针对深度置信网络(DBN)模型性能受参数设定的影响,运用灰狼优化算法(GWO)对DBN模型参数进行优化选择,提出一种连续投影法的特征波长筛选与GWO-DBN的苹果内部品质评价模型。结果:与中粒子群算法改进深度置信网络(PSO-DBN)、遗传算法改进深度置信网络(GA-DBN)和DBN相比,基于GWO-DBN的苹果内部品质评价的准确度最高。结论:GWO-DBN算法可以有效提高苹果内部品质评价的准确率。

    Abstract:

    Objective:In order to resolve a lot of redundant information and low precision of apple internal quality evaluation existed in apple near infrared spectroscopy, improving the precision of apple internal quality evaluation.Methods:A new apple inner quality evaluation model based on deep belief network (DBN) and grey wolf optimization algorithm was proposed. According to the characteristic of high dimension and complexity of apple spectral data, the method of selecting characteristic wavelengths of apple spectral data was determined by comparing the results of selecting characteristic wavelengths of full-band, principal component analysis and continuous projection. The parameters of DBN model were optimized by GWO Algorithm, and a continuous projection method for feature wavelength selection and GWO-DBN model for apple inner quality evaluation were proposed.Results:Compared with PSO-DBN, GA-DBN and DBN, the accuracy of apple inner quality evaluation based on GWO-DBN was the highest.Conclusion:This algorithm can effectively improve the accuracy of apple inner quality evaluation and provide a new method for apple inner quality evaluation.

    参考文献
    相似文献
    引证文献
引用本文

胡春艳,于来行.改进深度置信网络的苹果内部品质评价[J].食品与机械,2022,(4):156-161.
HU Chun-yan, YU Lai-hang. Evaluation of apple inner quality based on improved deep belief network[J]. Food & Machinery,2022,(4):156-161.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。