基于电子舌和电子鼻结合DenseNet-ELM的陈醋年限检测
CSTR:
作者:
作者单位:

作者简介:

王首程,男,山东理工大学在读硕士研究生。

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金(编号:ZR2019MF024);教育部科技发展中心产学研创新基金(编号:2018A02010)


Age detection of mature vinegar based on electronic tongue and electronic nose combined with DenseNet-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:实现陈醋酿造年限的快速检测。方法:采用电子舌(ET)和电子鼻(EN)结合密集卷积网络—极限学习机(DenseNet-ELM)模型对陈醋酿造年限进行快速检测,设计两种不同结构的密集卷积神经网络模型ET-DenseNet和EN-DenseNet,分别提取电子舌和电子鼻信号的特征信息,进而采用特征级信息融合方法,获得两种人工感官设备的融合特征向量,然后采用极限学习机(ELM)对融合的特征向量进行分类识别。结果:DenseNet能够有效提取到电子舌和电子鼻信号中深层特征,其特征提取能力优于离散小波变换(DWT)和卷积神经网络(CNN);相比于单独使用电子舌或者电子鼻,信息融合方法对不同年限陈醋检测的准确性和鲁棒性更优,其测试集准确率、查准率、召回率、F1-Score分别达到99.1%,0.98,0.99和0.99。结论:采用密集卷积网络缓解了深度学习模型由于深度增加导致的模型退化、泛化能力弱等问题,可对7种不同酿造年限的陈醋进行有效分类。

    Abstract:

    Objective:In order to realize the rapid detection of the brewing age of mature vinegar.Methods:Electronic tongue (ET) and electronic nose (EN) combined with Densely Connected Convolutional Networks-Extreme Learning Machine (DenseNet-ELM) model were used to quickly detect the brewing age of mature vinegar. Two DenseNet models with different structures, ET-DenseNet and EN-DenseNet, were designed to extract the feature information of the electronic tongue and electronic nose signals respectively. And then the feature level information fusion method was used to obtain the fusion feature vectors of the two artificial sensory devices. Then Extreme Learning Machine (ELM) was used to classify and recognize the fused feature vectors.Results:DenseNet can effectively extract the deep features of electronic tongue and electronic nose signals, and its feature extraction ability was better than Discrete Wavelet Transform (DWT) and Convolutional Neural Network (CNN); Compared with the use of electronic tongue or electronic nose alone, the information fusion method had better accuracy and robustness for the detection of mature vinegar of different years. The Accuracy, Precision, Recall and F1-score of the test set reach 99.1%, 0.98, 0.99 and 0.99, respectively.Conclusion:The dense convolution network can alleviate the problems of model degradation and weak generalization ability caused by the increase of depth of the deep learning model, and can effectively classify seven kinds of aged vinegar with different brewing years.

    参考文献
    相似文献
    引证文献
引用本文

王首程,于雪莹,高继勇,等.基于电子舌和电子鼻结合DenseNet-ELM的陈醋年限检测[J].食品与机械,2022,(4):72-80.
WANG Shou-cheng, YU Xue-ying, GAO Ji-yong, et al. Age detection of mature vinegar based on electronic tongue and electronic nose combined with DenseNet-ELM[J]. Food & Machinery,2022,(4):72-80.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-20
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。