一种基于卷积神经网络的烟叶等级识别方法
CSTR:
作者:
作者单位:

作者简介:

焦方圆,女,郑州大学在读硕士研究生。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(编号:69587005)


A method of tobacco leaf grade recognition based on convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决烟叶分级准确率不高的问题。方法:提出一种改进的基于卷积神经网络的烟叶分级模型,根据VGG16网络结构,以自定义的方式搭建网络模型;将空洞卷积代替原有的传统卷积,增加图像感受野的同时避免了图像特征的损失,并将激活函数改为Leaky_relu,修正数据的分布,解决ReLU函数的硬饱和问题;用41种等级的烟叶图片加以测试。结果:试验改进算法分级准确率达95.89%,与传统SVM算法相比提高了10.46%,与经典VGG16算法相比提高了7.87%,损失率最终收敛于0.13。结论:与原始模型和传统特征提取的方式相比,试验算法在烟叶分级准确率性能上有所提高。

    Abstract:

    Objective:To solve the problem of low accuracy of tobacco grading. Methods:An improved tobacco leaf grading model based on convolutional neural network was proposed. According to the VGG16 network structure, the network model was built in a custom way. The traditional convolution was replaced by the hole convolution, which increased the image receptive field while avoiding. The loss of image features was changed, and the activation function was changed to Leaky_relu. The data distribution was corrected, and the hard saturation problem of the ReLU function was solved. 41 levels of tobacco leaf pictures were used for testing. Results:The grading accuracy rate of the test algorithm was 95.89%, which was 10.46% higher than the traditional SVM algorithm, and 7.87% higher than the classic VGG16 algorithm. The loss rate finally converged to 0.13. Conclusion:Compared with the original model and traditional feature extraction Methods, this algorithm has improved the accuracy of tobacco leaf classification.

    参考文献
    相似文献
    引证文献
引用本文

焦方圆,申金媛,郝同盟.一种基于卷积神经网络的烟叶等级识别方法[J].食品与机械,2022,(2):222-227.
JIAO Fang-yuan, SHEN Jin-yuan, HAO Tong-meng. A method of tobacco leaf grade recognition based on convolutional neural network[J]. Food & Machinery,2022,(2):222-227.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。