基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测
CSTR:
作者:
作者单位:

作者简介:

涂伟沪(1972—),男,新疆哈密广播电视大学副教授,硕士。E-mail:t18099023995@163.com

通讯作者:

中图分类号:

基金项目:

四川省科技计划软科学研究项目(编号:2019JDR0030);四川省区域创新合作项目(编号:2020YFQ0018)


Egg crack image detection method based on improved grasshopper optimization algorithm and canny operator
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高鸡蛋线形、网状裂纹检测率。方法:针对蝗虫优化算法(GOA)求解高维复杂优化问题时收敛效率不高的缺陷,设计改进的模糊C均值算法(FCM)对蝗虫种群进行等级划分;设计自适应极值逆向学习和编码突变更新机制,以扩展算法深度搜索空间和全局寻优能力;采用改进的GOA对参数进行优化,并将改进蝗虫算法优化Canny算子用于鸡蛋裂纹检测。结果:该方法对鸡蛋线形裂纹和网状裂纹漏检率分别降低了21.4%~31.2%,63.2%~69.7%,优于其他算法。结论:该方法能有效提升鸡蛋裂纹检测准确率。

    Abstract:

    Objective:In order to improve the detection effect of egg linear and reticular cracks.Methods:As the low convergence efficiency of Grasshopper optimization algorithm (GOA) in solving high-dimensional complex optimization problems, an improved fuzzy cmeans algorithm (FCM) was designed to classify locust population. The adaptive extreme value reverse learning and coding mutation update mechanism were designed to expand the depth search space and global optimization ability of the algorithm. The improved GOA was used to optimize the parameters, and the improved canny operator was used for egg crack detection.Results:The results showed that the missed detection rates of egg linear crack and mesh crack were improved by about 21.4%~31.2% and 63.2%~69.7% respectively, which was better than other algorithms.Conclusion:This method can effectively improve the accuracy of egg crack detection.

    参考文献
    相似文献
    引证文献
引用本文

涂伟沪,蔡玲霞,李学军.基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测[J].食品与机械,2022,(2):167-172.
TU Wei-hu, CAI Ling-xia, LI Xue-jun. Egg crack image detection method based on improved grasshopper optimization algorithm and canny operator[J]. Food & Machinery,2022,(2):167-172.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。