机器视觉和电子鼻融合的番茄成熟度检测方法
作者:
作者单位:

作者简介:

王俊平(1972—),男,湖北职业技术学院副教授,硕士。E-mail:wjp72@21cn.com

通讯作者:

中图分类号:

基金项目:

湖北省自然科学基金(编号:2018CFC799)


Research on tomato maturity detection method based on machine vision and electronic nose fusion
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:探索机器视觉与电子鼻融合法在果蔬成熟度检测中的应用能力,实现番茄不同成熟度的检测。方法:基于机器视觉和电子鼻采集系统,提出了一种基于多源信息融合的番茄成熟度检测方法。以机器视觉筛选出的6个颜色特征和电子鼻筛选出的10个气味特征为基础,建立番茄成熟度检测的最小二乘支持向量机模型。通过试验对融合方法和单一方法进行对比分析,验证了该方法的可行性。结果:与单一检测方法相比,多源融合方法提高了番茄成熟度识别、番茄硬度和番茄红素预测的准确性。结论:多源融合方法在一定程度上提高了果蔬成熟度的检测能力。

    Abstract:

    Objective:To explore the application ability of machine vision and electronic nose fusion method in fruit and vegetable maturity detection, and realize the detection of different maturity of tomato.Methods:Based on machine vision and electronic nose acquisition system, a tomato maturity detection method based on multi-source information fusion was proposed. Based on 6 color features screened by machine vision and 10 odor features screened by electronic nose, the least squares support vector machine model for tomato maturity detection was established. The feasibility of this method is verified by comparing the fusion method with single method.Results:Compared with the single detection method, the multi-source fusion method improves the accuracy of tomato maturity recognition, tomato hardness and lycopene prediction.Conclusion:The multi-source fusion method improves the detection ability of fruit and vegetable maturity to a certain extent.

    参考文献
    相似文献
    引证文献
引用本文

王俊平,徐刚.机器视觉和电子鼻融合的番茄成熟度检测方法[J].食品与机械,2022,(2):148-152.
WANG Jun-ping, XU Gang. Research on tomato maturity detection method based on machine vision and electronic nose fusion[J]. Food & Machinery,2022,(2):148-152.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-07
  • 出版日期:
文章二维码
湘CP备05003881

邮政编码 :410114

联系地址:湖南省长沙市天心区万家丽南路二段960号

投稿邮箱:foodmm@ifoodmm.com

联系电话:0731-85258200