基于ResNeXt与迁移学习的干制哈密大枣果梗/花萼及缺陷识别
CSTR:
作者:
作者单位:

作者简介:

李聪,男,石河子大学在读硕士研究生。

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(编号:61763043)


Research on recognition of stem/calyx and defects of dried Hami jujube based on ResNeXt and transfer learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决目前红枣检测过程中果梗/花萼容易被误识别为缺陷枣的问题。方法:提出一种基于深度学习和图像处理的干制哈密大枣果梗/花萼及缺陷识别方法。通过改进深度残差网络ResNeXt-50,采用感兴趣区域提取方法和迁移学习技术提出一种TL-ROI-X-ResNext-50分类模型,实现干制哈密大枣果梗/花萼及缺陷分类。结果:通过模型试验对比,感兴趣区域提取方法和迁移学习技术可以减少模型计算成本,提高准确率,模型识别准确率可达94.17%。结论:该方法可初步满足干制哈密大枣果梗/花萼及缺陷在线检测装备的生产需求。

    Abstract:

    Objective:This study focuses on solving the problems that stem and calyx are mistakenly recognized as defective jujube in the current detection process of jujube.Methods:A method for identifying stem / calyx and defects of dried Hami jujube based on deep learning and image processing was proposed. By improving the depth residual network ResNeXt-50, using the region of interest extraction method and transfer learning technology, TL-ROI-X-ResNeXt-50 classification model was proposed to realize the classification of stem / calyx and defects of dried Hami jujube.Results:Through the comparison of model experiments, the region of interest extraction method and transfer learning technology could reduce the calculation cost of the model and improve the accuracy. The accuracy of model recognition could reached 94.17%.Conclusion:The method can initially meet the production requirements of on-line detection equipment for stem / calyx and defects of dried Hami jujube, and provide theoretical basis and technical reference for the development of rapid nondestructive detection system for stem / calyx and defects of other similar fruits.

    参考文献
    相似文献
    引证文献
引用本文

李聪,喻国威,张原嘉,等.基于ResNeXt与迁移学习的干制哈密大枣果梗/花萼及缺陷识别[J].食品与机械,2022,(1):133-138.
LI Cong, YU Guowei, ZHANG Yuanjia, et al. Research on recognition of stem/calyx and defects of dried Hami jujube based on ResNeXt and transfer learning[J]. Food & Machinery,2022,(1):133-138.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2022-07-04
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。