基于堆栈自动编码器的永磁电动机定子绕组故障诊断
CSTR:
作者:
作者单位:

(1. 黄河交通学院智能工程学院,河南 焦作 454950;2. 国网焦作供电公司,河南 焦作 454000;3. 河南理工大学电气工程与自动化学院,河南 焦作 454000)

作者简介:

田广强,男,黄河交通学院副教授,硕士。

通讯作者:

王福忠(1961—),男,河南理工大学教授,博士研究生导师,博士。E-mail: wangfzh@hpu.edu.cn

中图分类号:

基金项目:

国家重点研发计划专项(编号:2016YFC0600906);河南省科技攻关(编号:212102210146)


Fault diagnosis of permanent magnet motor stator winding based on stacked auto encoder
Author:
Affiliation:

(1. School of Intelligent Engineering, Huanghe Jiaotong University, Jiaozuo, Henan 454950, China; 2. State Grid Jiaozuo Power Supply Company, Jiaozuo, Henan 454000, China; 3. School of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo, Henan 454000, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:提高永磁电动机定子绕组故障诊断的准确率和全面性。方法:研究提出基于堆栈自动编码器(SAE)永磁电机定子绕组故障诊断模型,由SAE和Softmax分类器组成的神经网络,利用故障样本数据对该网络进行训练;利用模拟退火粒子群算法(SAPSO)对网络的连接权重和偏置进行寻优,确定其较优的网络结构。结果:利用该网络实现了永磁电动机定子绕组的匝间短路、相间短路以及相间绝缘降低和接线端子接触不良等故障诊断,其诊断准确率为99.40%,优于小波分析+Softmax、频谱分析+Softmax和SAE+Softmax 3种方法。结论:经过优化后的SAE+Softmax故障诊断模型鲁棒性好,受电机的转速和负载变化的影响小,可以提高永磁电动机定子绕组故障诊断的准确率。

    Abstract:

    Objective: To improve the accuracy and comprehensiveness of permanent magnet motor stator winding fault diagnosis. Methods: A fault diagnosis model of permanent magnet motor stator winding based on stack autoencoder (SAE) was proposed, and a neural network composed of SAE and Softmax classifier was used to train the network with fault sample data. The simulated annealing particle swarm optimization (SAPSO) algorithm was used to optimize the connection weight and bias of the network, and determined the optimal network structure. Results: The network had been used to realize the fault diagnosis of inter-turn short-circuit, inter-phase short-circuit, inter-phase insulation reduction, and poor contact of the terminals of the permanent magnet motor stator windings. Compared with wavelet analysis +Softmax, spectrum analysis +Softmax and SAE+Softmax, the diagnostic accuracy of this method was the highest, and the diagnostic rate was 99.40%. Conclusion: The optimized SAE+Softmax fault diagnosis model has good robustness and is less affected by motor speed and load changes, which can improve the accuracy of permanent magnet motor stator winding fault diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

田广强,冯文成,王福忠.基于堆栈自动编码器的永磁电动机定子绕组故障诊断[J].食品与机械,2021,37(11):92-98.
TIANGuangqiang, FENGWencheng, WANGFuzhong. Fault diagnosis of permanent magnet motor stator winding based on stacked auto encoder[J]. Food & Machinery,2021,37(11):92-98.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。