基于变量优选的苹果糖分含量近红外光谱检测
CSTR:
作者:
作者单位:

(1. 塔里木大学信息工程学院,新疆 阿拉尔 843300;2. 南京理工大学理学院,江苏 南京 210094)

作者简介:

张立欣,女,塔里木大学副教授,博士。

通讯作者:

张晓(1987—),女,塔里木大学副教授,硕士。E-mail:zhangxiaoscnu@163.com

中图分类号:

基金项目:

国家自然科学地区项目(编号:31960503);国家自然科学基金项目地区项目(编号:61662064);塔里木大学校长基金项目(编号:TDZKSS2022006,TDZKQN201709);塔里木大学农业工程重点实验室项目(编号:TDNG20180301)


Detection of sugar content in apple by near infrared spectroscopy based on variable optimization
Author:
Affiliation:

(1. College of Information Engineering, Tarim University, Alaer, Xinjiang 843300, China;2. School of Science, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:在900~1 700 nm的波长范围内采集苹果的近红外光谱数据,结合化学计量学方法对糖分含量进行无损检测。方法:先对光谱数据依次进行基线校正、散射校正、平滑和尺度缩放,以交叉验证的均方根误差最小选出最佳的预处理方法。采用连续投影算法(SPA)、竞争性自适应重加权算法(CARS)分别选取7,52个特征变量。分别以连续投影算法选取的特征变量、竞争性自适应重加权算法选取的特征变量、两种方法选出的特征变量的组合作为输入自变量,建立线性偏最小二乘回归法模型和非线性的极限学习机模型。结果:组合的特征变量建模效果优于单一方法选出的特征变量的建模效果,非线性模型优于线性模型。结论:采用组合的特征变量,建立极限学习机模型,预测效果最优,训练集的均方根误差为0.710 1,拟合优度为0.883 8,测试集的均方根误差为0.637 5,拟合优度为0.894 5。

    Abstract:

    Objective: The sugar content in apple directly affects its taste. The near infrared spectrum data of apples were collected in the wavelength range of 900~1 700 nm to detect the sugar content nondestructively in conjunction with the chemometrics method. Methods: Firstly, the spectral data were corrected by baseline, scattered, smoothed, and scaled in turn, and then the best preprocessing method was selected by minimizing the root mean square error of cross-validation. Secondly, 7 and 52 feature variables were selected by successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) respectively. Finally, the linear PLS model and nonlinear ELM model were established with the feature variables selected by SPA method, CARS method and their combination as input variables respectively. Results: The results showed that the modeling effect of the combined feature variables was better than that of the single method, and the nonlinear models were better than that of the linear models. Conclusion: ELM model established by using combined characteristic variables has the best prediction effect, with RMSEC=0.710 1, R2c=0.883 8, RMSEP=0.637 5, R2p=0.894 5, which can provide theoretical reference for the development of apple hyperspectral detection device.

    参考文献
    相似文献
    引证文献
引用本文

张立欣,杨翠芳,陈杰,等.基于变量优选的苹果糖分含量近红外光谱检测[J].食品与机械,2021,37(10):112-118.
ZHANGLixin, YANGCuifang, CHENJie, et al. Detection of sugar content in apple by near infrared spectroscopy based on variable optimization[J]. Food & Machinery,2021,37(10):112-118.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-21
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。