基于深度学习的山核桃破壳物料分类识别
CSTR:
作者:
作者单位:

(安徽农业大学工学院,安徽 合肥 230036)

作者简介:

李文宝,男,安徽农业大学在读硕士研究生。

通讯作者:

曹成茂(1964—),男,安徽农业大学教授,博士生导师,博士。E-mail:caochengmao@sina.com

中图分类号:

基金项目:

国家自然基金面上项目(编号:52075003)


Classification and recognition of broken hickory shell materials based on deep learning
Author:
Affiliation:

(College of Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:对山核桃一次破壳后物料进行分类,提高山核桃深加工水平。方法:通过图像采集系统得到5类山核桃样本,分别为较完整壳仁未分、露仁、未破壳完整山核桃、不完整壳仁未分、壳。利用数据增广的方式,得到包含15 000个图像样本建立的数据集。在VGG16网络基础上构建模型,并按9∶1的比例在包含5类山核桃物料图像的数据集上进行训练和验证。结果:该模型训练准确率和验证准确率分别达到了97.3%,99.7%;对1 713张山核桃加工物料图像进行分类识别,准确度达到了99.5%。结论:该模型能够达到对山核桃一次破壳后的物料分类识别的精度要求。

    Abstract:

    Objective: In order to classify the pecan materials after the shell is broken, and to improve the deep processing level of pecans. Methods: 5 types of pecan samples were obtained through the image acquisition system, including relatively intact shell kernels, undivided kernels, unbroken intact pecans, incomplete shell kernels undivided, and shells. Using the data augmentation way, a sample containing 15 000 images created data sets were obtained. Build a model based on the VGG16 network, which was trained and verified on a data set containing 5 types of pecan material images according to the ratio of 9∶1. Results: The results showed that the accuracy of model training and validation accuracy reached 97.3% and 99.7%, respectively. Through classification and recognition of 1 713 hickory processed material images, the accuracy reached 99.5%. Conclusion: The model can be achieved after a break of pecan shell material classification accuracy requirements.

    参考文献
    相似文献
    引证文献
引用本文

李文宝,曹成茂,张金炎,等.基于深度学习的山核桃破壳物料分类识别[J].食品与机械,2021,(9):133-138.
LIWenbao, CAOChengmao, ZHANGJinyan, et al. Classification and recognition of broken hickory shell materials based on deep learning[J]. Food & Machinery,2021,(9):133-138.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-02-12
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。