水果腐败传感监测系统设计与试验
CSTR:
作者:
作者单位:

(1. 江苏大学食品与生物工程学院,江苏 镇江 212013;2. 中华全国供销合作总社济南果品研究院,山东 济南 250220)

作者简介:

郭闯,男,江苏大学在读硕士研究生。

通讯作者:

郭志明(1982—),男,江苏大学教授,博士生导师,博士。E-mail:guozhiming@ujs.edu.cn

中图分类号:

基金项目:

国家重点研发计划项目(编号:2017YFC1600802);国家自然科学基金项目(编号:31972151);江苏省重点研发计划项目(编号:BE2019359);江苏大学第19批大学生科研课题立项资助项目(编号:19A394);济南市“高校20条”资助项目(编号:2020GXRC028)


Design and test of spoilage sensing monitoring system for fruit
Author:
Affiliation:

(1. School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China;2. Jinan Fruit Research Institute, All China Federation of Supply & Marketing Cooperatives, Jinan, Shandong 250220, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    目的:解决水果腐败多气体动态监测和早期预警的难点。方法:设计了气体传感器模块、数据采集模块等模块,开发了检测软件,集成研制了基于气体传感器阵列检测系统。以苹果为验证对象,探析了苹果腐败前气体传感器的响应差异及变化规律。结果:建立了线性判别分析、K-最近邻和反向传播人工神经网络(BP-ANN)3种苹果腐败前天数的判别模型,其中BP-ANN识别率达99%;通过联合区间、遗传算法、模拟退火、蚁群算法和竞争自适应重加权抽样法(CARS)5种变量筛选方法结合偏最小二乘法(PLS)筛选特征变量,建立了腐败前天数定量预测模型,CARS-PLS模型的预测效果最优,相关系数可达0.974。结论:基于气体传感器技术的水果腐败检测是可行的,为水果腐败检测系统的研发提供参考。

    Abstract:

    Objective: In order to solve the difficulty of multi-gas dynamic monitoring and early warning of fruit spoilage. Methods: Based on the gas sensor, the fruit spoilage sensor detection system was developed, and the gas sensor module, data acquisition module and other modules were designed. Developed inspection software and integrated inspection system.Taking apple as the verification object, the response difference and change law of the gas sensor before apple corruption were analyzed. Results: The linear discriminant analysis, k-nearest neighbor and back-propagation artificial neural network (BP-ANN) chemometric methods were used to establish the classification model of apple before spoilage. The recognition rate of BP-ANN was the highest, the training set and prediction set were 99.53% and 99.38% respectively. Synergy interval, genetic algorithm, simulated annealing, ant colony algorithm and competitive adaptive reweighted sampling (CARS) combined with partial least square (PLS) were used to screen characteristic variables to establish the prediction model of days before corruption. The CARS showed an optimal performance in predicting the days before corruption, to achieve Rp of 0.974. Conclusion: It shows that the fruit spoilage detection based on gas sensor technology is feasible, and it provides a reference for the research and development of fruit spoilage detection system.

    参考文献
    相似文献
    引证文献
引用本文

郭闯,郭志明,孙力,等.水果腐败传感监测系统设计与试验[J].食品与机械,2021,(9):66-72.
GUOChuang, GUOZhiming, SUNLi, et al. Design and test of spoilage sensing monitoring system for fruit[J]. Food & Machinery,2021,(9):66-72.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-04-13
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。