基于改进的GoogLeNet鸭蛋表面缺陷检测
CSTR:
作者:
作者单位:

(广东工业大学机电工程学院,广东 广州 510006)

作者简介:

肖旺,男,广东工业大学在读硕士研究生。

通讯作者:

杨煜俊(1980—),男,广东工业大学副教授,博士。E-mail:15195797@qq.com

中图分类号:

基金项目:

广东省重点领域研发项目(编号:2019B090916002);广州市科技计划项目(编号:201902010054)


Duck egg surface defect detection based on improved GoogLeNet
Author:
Affiliation:

(School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章提出了一种基于改进的GoogLeNet(GoogLeNet-Mini)的鸭蛋表面缺陷检测方法,并对比其他3种神经网络GoogLeNet、VGG16和AlexNet。结果表明,4种网络的测试集准确率分别为95.88%,94.16%,92.75%,85.43%。GoogLeNet-Mini对测试集3类鸭蛋(正常、脏污、破损)的检测准确率分别为98.43%,97.45%,95.88%。与GoogLeNet、VGG16和AlexNet相比,GoogLeNet-Mini具有更高的准确率,更好的泛化性与鲁棒性,且对3类鸭蛋的检测准确度均能达到生产要求,检测范围适用于脏污面积超过5%,破损面积超过2%的鸭蛋。

    Abstract:

    A method of duck egg surface defect detection based on improved GoogLeNet (GoogLe Net-Mini) was proposed, and the other three neural networks include GoogLeNet, VGG16 and AlexNet were compared. The results showed that the accuracy of the four networks were 95.88%, 94.16%, 92.75% and 85.43% respectively. The detection accuracy of GoogLeNet-Mini for three kinds of duck eggs (normal, dirty and damaged) was 98.43%, 97.45% and 95.88% respectively. Compared with GoogLeNet, VGG16 and AlexNet, GoogLeNet-Mini had higher accuracy, better generalization and robustness, and the detection accuracy of three types of duck eggs can meet the production requirements. The detection range is applicable to duck eggs with more than 5% dirty area and more than 2% damaged area.

    参考文献
    相似文献
    引证文献
引用本文

肖旺,杨煜俊,申启访,等.基于改进的GoogLeNet鸭蛋表面缺陷检测[J].食品与机械,2021,37(6):162-167.
XIAOWang, YANGYujun, SHENQifang, et al. Duck egg surface defect detection based on improved GoogLeNet[J]. Food & Machinery,2021,37(6):162-167.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-03-15
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。