基于近红外光谱技术的黄桃脆片可溶性固形物和硬度定量检测方法
CSTR:
作者:
作者单位:

(1. 南京农业大学食品科技学院,江苏 南京 210095;2. 南京财经大学食品科学与工程学院,江苏 南京 210023;3. 江苏省现代粮食流通与安全协同创新中心,江苏 南京 210023;4. 江苏高校粮油质量安全控制及深加工重点实验室,江苏 南京 210023;5. 江苏派乐滋食品有限公司,江苏 徐州 221008)

作者简介:

曹念念,女,南京农业大学在读硕士研究生。

通讯作者:

刘强(1991—),男,南京财经大学讲师,博士。E-mail: qiangliu@nufe.edu.cn潘磊庆(1980—),男,南京农业大学教授,博士生导师,博士。E-mail: pan_leiqing@njau.edu.cn

中图分类号:

基金项目:

江苏省重点研发计划项目(编号:BE2019312);国家自然科学基金项目(编号:31671926,31671925)


Study on quantitative detection of soluble solids and firmness of yellow peach chips by near-infrared spectroscopy
Author:
Affiliation:

(1. College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China;2. College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, China; 3. Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China; 4. Jiangsu Key Laboratory of Quality Control and Further Processing of Cereals and Oil, Nanjing, Jiangsu 210023, China; 5. Jiangsu Palarich Food Company, Xuzhou, Jiangsu 221008, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以多批次黄桃脆片为分析对象,分别采集了可见/短波近红外光谱(400~1 000 nm)和长波近红外光谱(1 000~2 500 nm)原始信息,分别采用标准正态变量变换(SNV)、多元散射校正(MSC)、移动平均平滑(MS),一阶导数(1-Der)预处理后,建立了全波段线性偏最小二乘法(PLS)和非线性支持向量机(SVM)预测模型,并结合外部试验进行可行性验证。结果表明,基于MSC-SVM的可见/短波红外光谱模型对可溶性固形物预测效果最佳,验证集的决定系数(Rp)、预测均方根误差(RMSEP)、相对预测偏差(RPD)分别为0.761,1.998%和1.532;而基于MSC-SVM的长波近红外光谱模型对硬度预测效果相对最佳,对应Rp、RMSEP和RPD分别为0.862,0.292 kg和1.991。基于近红外光谱系统可以实现对大批量黄桃脆片品质参数的快速无损检测。

    Abstract:

    The spectral data was collected by using two different infrared spectroscopies with 400 to 1 000 nm (visible-shortwave) and 1 000 to 2 500 nm (longwave) from yellow peach chips. Then four mathematic algorithms, i. e. standard normal variate transformation (SNV), multiplicative scatter correction (MSC), moving-average smoothing (MS) and 1st-derivative (1-Der), were utilized in data preprocessing. Regression models by linear partial least squares (PLS) and non-liner support vector machine (SVM) were constructed for the predicting the soluble solids content (SSC) and firmness in yellow peach chips, respectively. Moreover, the feasibility analysis for prediction of SSC and firmness were vitrificated by the external experiments. The results showed that the best performance for SSC prediction was obtained with Rp of 0.761, RMSEP of 1.998% and RPD of 1.532 by MSC-SVM algorithm in 400 to 1 000 nm. However, the best performance for firmness prediction was obtained with Rp of 0.862, RMSEP of 0.292 kg and RPD of 1.991 by MSC-SVM algorithm in 1 000 to 2 500 nm. All these findings demonstrated that the near-infrared spectroscopy could be utilized to monitor the quality of fruit chips with non-destructive attributes, and also positively promote the development of online automated grading system.

    参考文献
    相似文献
    引证文献
引用本文

曹念念,刘强,彭菁,等.基于近红外光谱技术的黄桃脆片可溶性固形物和硬度定量检测方法[J].食品与机械,2021,37(3):51-57.
CAONiannian, LIUQiang, PENGJing, et al. Study on quantitative detection of soluble solids and firmness of yellow peach chips by near-infrared spectroscopy[J]. Food & Machinery,2021,37(3):51-57.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-10-09
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。