基于多尺度卷积神经网络的缺陷红枣检测方法
CSTR:
作者:
作者单位:

(郑州大学机械与动力工程学院,河南 郑州 450001)

作者简介:

方双,女,郑州大学在读硕士研究生。

通讯作者:

赵凤霞(1971—),女,郑州大学教授,博士。E-mail:zfxmail@163.com

中图分类号:

基金项目:

国家重点研发计划项目(编号:2017YFF0206501-01)


Defective jujube detection technology based on multi-scale convolutional neural network
Author:
Affiliation:

(School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于多尺度卷积神经网络的缺陷红枣检测方法,在AlexNet卷积神经网络上增加并行的多尺度卷积模块,增加网络的深度和宽度,减少网络中的参数;在卷积层中加入批标准化处理,减少训练过程中数据分布的变化,提高网络的泛化能力。以新疆干制红枣中的黄皮枣、霉变枣、破头枣和正常枣为研究对象,对这些干制红枣进行训练和验证。结果表明:该模型对黄皮枣、霉变枣、破头枣和正常枣的识别率分别为96.67%,96.25%,98.57%,97.14%,综合识别率可达97.14%。与其他的算法相比,该算法具有较强的稳健性,对缺陷红枣的识别准确率更高。

    Abstract:

    In this paper, a method based on a multi-scale convolutional neural network for detecting defects in jujube is proposed. Parallel multi-scale convolution modules were added to the AlexNet convolutional neural network to increase the depth and width of the network and reduce the parameters in the network; Added batch normalization processing to the convolutional layer to reduce changes in data distribution during training and improve the generalization ability of the network. Taking the yellow-skinned jujube, moldy jujube, broken-head jujube and normal jujube in Xinjiang dried jujube as the research objects, these dried jujubes were trained and verified. The results showed that the recognition rates of this model for yellow-skinned jujubes, moldy jujubes, broken-head jujubes and normal jujubes were 96.67%, 96.25%, 98.57%, and 97.14% respectively, and the comprehensive recognition rate could reach 97.14%. Compared with other algorithms, this algorithm was more robust and had higher accuracy in identifying defective red jujubes.

    参考文献
    相似文献
    引证文献
引用本文

方双,赵凤霞,楚松峰,等.基于多尺度卷积神经网络的缺陷红枣检测方法[J].食品与机械,2021,37(2):158-163.
FANGShuang, ZHAOFengxia, CHUSongfeng, et al. Defective jujube detection technology based on multi-scale convolutional neural network[J]. Food & Machinery,2021,37(2):158-163.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-09-17
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。