基于PCA-SVM的红枣缺陷识别方法
CSTR:
作者:
作者单位:

(郑州大学机械与动力工程学院,河南 郑州 450001)

作者简介:

楚松峰,男,郑州大学在读硕士研究生。

通讯作者:

赵凤霞(1971—),女,郑州大学教授,博士。E-mail:zfxmail@163.com

中图分类号:

基金项目:

国家重点研发计划项目(编号:2017YFF0206501-01)


Recognition method of jujube defects based on PCA-SVM
Author:
Affiliation:

(School of Mechanical and Power Engineering, Zhengzhou University, Zhengzhou, Henan 450001, China)

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以干制红枣的黑斑、破头以及分类难度较高的干条3种病害图像作为研究对象,分别采用颜色矩和灰度共生矩阵提取颜色、纹理特征中的14维特征向量,然后采用主成分分析法对特征向量进行优化,得到4个主因素特征向量作为支持向量机输入。采用交叉算法确定最优支持向量机惩罚参数c和核函数参数g对支持向量机多分类模型进行训练,利用训练后的模型对红枣进行多分类试验。结果证明,该方法能够对红枣黑斑、破头和干条3种缺陷果进行快速准确的识别,识别率分别为93.3%,100.0%和96.6%,总识别率可达97.2%,且分类效率高。

    Abstract:

    In this study, three kinds of disease images of jujubes, black spots, broken heads and dry strips with high classification difficulty were used as research materials. The color moment and gray level co-occurrence matrix were used to extract 14-dimensional eigenvectors of the color and texture features of jujube, and the principal component analysis method was used to optimize the features. Four principal factors of eigenvectors were obtained and then used as the input of support vector machine. The crossover algorithm was used to determine the optimal support vector machine penalty parameter c and kernel function parameter g, which was used as the parameter of the support vector machine multi-classification model to train the model. Using the trained model to perform multi-classification experiments on the jujube, the results proved that the three kinds of defects of jujube could recognized quickly and accurately, with the recognition rate at 93.3%, 100.0% and 96.6%, respectively. The classification accuracy of this model for jujube defects could reach 97.2%, with high efficiency.

    参考文献
    相似文献
    引证文献
引用本文

楚松峰,赵凤霞,方双,等.基于PCA-SVM的红枣缺陷识别方法[J].食品与机械,2021,37(1):156-160.
CHUSongfeng, ZHAOFengxia, FANGShuang, et al. Recognition method of jujube defects based on PCA-SVM[J]. Food & Machinery,2021,37(1):156-160.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-07-28
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期: 2021-01-28
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。