基于决策融合的苹果分级检测关键技术研究
CSTR:
作者:
作者单位:

作者简介:

李学军,女,四川大学副教授,硕士

通讯作者:

中图分类号:

基金项目:

基金项目:四川省科技计划软科学研究项目(编号:2019JDR0030)


Study on key technologies for apple grading detection based on decision fusion method
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种判别树和改进支持向量机决策融合的苹果分级方法。采用判别树分类方法根据果径、缺陷区域、色泽等进行分类,采用粒子群对支持向量机分类模型进行优化,根据果形、纹理和成熟度等高维特征进行分类,使用核主成分分析法降低维度,并引入决策融合的概念,结合单一特征对样本等级进行综合评估。结果表明,该方法是切实可行的,其分类准确性为98%以上,可用于苹果的有效分级。

    Abstract:

    An apple grading method based on decision fusion of discriminant tree and improved support vector machine was proposed. The method of discriminant tree classification was used to classify fruit diameter, defect area and color, and the particle swarm optimization (PSO) was used to optimize the SVM classification model. The high dimensional features, such as fruit shape, texture and maturity, were used to classify, and the kernel principal component analysis (KPCA) was used to reduce the dimension. While, the concept of decision fusion was introduced to comprehensively evaluate the sample level combined with single feature. The results showed that the method was feasible, and its classification accuracy was more than 98%, which can be used for apple grading effectively.

    参考文献
    相似文献
    引证文献
引用本文

李学军,程红.基于决策融合的苹果分级检测关键技术研究[J].食品与机械,2020,(12):136-140.
LI Xue-jun, CHENG Hong. Study on key technologies for apple grading detection based on decision fusion method[J]. Food & Machinery,2020,(12):136-140.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。