基于PSO-LSSVM和特征波长提取的羊肉掺假检测方法
CSTR:
作者:
作者单位:

作者简介:

成甜甜,女,河北农业大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

河北省现代农业产业技术体系产业创新团队品牌与产品加工岗位项目(编号:HBCT2018140203)


Detection method of mutton adulteration based on PSO-LSSVM and characteristic wavelengths extraction
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决羊肉—猪肉掺假快速检测这一问题,利用多光谱仪器对掺假羊肉进行光谱采集,得到样品在350~1 100 nm 波段下的反射率。对数据预处理后,利用粒子群算法(PSO)对最小二乘支持向量机(LSSVM)进行优化,建立了基于粒子群优化的最小二乘支持向量机模型(PSO-LSSVM),与偏最小二乘(PLS)、反向传播神经网络(BPNN)和LSSVM 3种模型结果进行比较,结果表明,PSO算法能有效优化LSSVM模型,预测的决定系数和均方根误差分别为0.920 4和0.089 2。进一步采用随机青蛙算(RF)、无信息变量消除法(UVE)、竞争性自适应重加权法(CARS)提取特征波长并建立偏最小二乘模型,结果显示,UVE-PLS模型预测集的决定系数和均方根误差分别为0.996 7和0.016 2,UVE优于其他特征波长提取方法。

    Abstract:

    In order to solve the problem of fast detection of adulteration of mutton and pork, the spectral collection of adulterated mutton was carried out by using a multi-spectral instrument, and the reflectivity of samples at the band of 350~1 100 nm was obtained. For data preprocessing, Particle Swarm Optimization (PSO) was used to optimize the Least Squares Support Vector Machine (LSSVM), and a Least Squares Support Vector Machine (PSO-LSSVM) model based on Particle Swarm Optimization was established, compared with Partial Least Squares(PLS), Back Propagation Neural Network (BPNN) and LSSVM models. The result showed that PSO algorithm could effectively optimize LSSVM model,and the decision coefficient and root mean square error of prediction was 0.920 4 and 0.089 2. Furthermore, Random frog (RF), Uninformative Variable Elimination (UVE) and Competitive Adaptive Reweighed Sampling (CARS) were used to extract the characteristic wavelengths and establishing the model of PLS. The results showed that the UVE-PLS model’s decision coefficient and the root mean square error of prediction set were 0.996 7 and 0.016 2, and UVE was better than other feature wavelengths extraction methods.

    参考文献
    相似文献
    引证文献
引用本文

成甜甜,王克俭,韩宪忠,等.基于PSO-LSSVM和特征波长提取的羊肉掺假检测方法[J].食品与机械,2020,(11):46-50.
CHENG Tian-tian, WANG Ke-jian, HAN Xian-zhong, et al. Detection method of mutton adulteration based on PSO-LSSVM and characteristic wavelengths extraction[J]. Food & Machinery,2020,(11):46-50.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。