烟叶松散回潮工艺参数和出料质量的贝叶斯网络模型构建与预测
CSTR:
作者:
作者单位:

作者简介:

唐军,男,云南中烟工业有限责任公司高级工程师,博士

通讯作者:

中图分类号:

基金项目:


Construction and prediction of Bayesian network model of relationship between process parameters and discharge quality in loosening and conditioning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用贝叶斯网络分析方法,通过建立松散回潮网络模型,对松散回潮生产过程中工艺参数与质量指标之间的复杂关系进行研究。结果表明:① 构建的松散回潮网络模型能较好地揭示工艺参数与质量指标之间的复杂关系和影响规律;② 各工艺参数对出料含水率的影响程度依次为气水混合自动阀门开度>单位时间物料累计量>加水比例>蒸汽自动阀门开度>工艺热风温度,各工艺参数对出料温度的影响程度依次为工艺热风温度>单位时间物料累计量>气水混合自动阀门开度>蒸汽自动阀门开度>加水比例;③ 构建的松散回潮网络模型对质量指标出料含水率和出料温度的预测精度分别为64.34%,65.72%,具有较好的预测效果和实用价值。

    Abstract:

    The complex relationship between the process parameters and the quality index of loosening and conditioning process was studied, and the network model was established by using Bayesian network analysis method. The results showed that: ① The network model of loosening and conditioning process could well reveal the influence relationship and influence weight of process parameters on the discharge moisture content and temperature. ② The influence degree of process parameters on the discharge moisture content was determined as from high to low, opening of automatic valve for air water mixing > unit time material cumulative measurement > water addition ratio > opening of automatic valve for steam > hot air temperature. But, the influence degree of process parameters on the discharge temperature was determined as from high to low, hot air temperature > unit time material cumulative measurement > opening of automatic valve for air water mixing > opening of automatic valve for steam > water addition ratio. ③ The prediction accuracy of network model of loosening and conditioning process on discharge moisture content and temperature were 64.34% and 65.72% respectively, which had a good application effect and practical value. It could be predicted that Bayesian network analysis method had a wide range of application prospects in guiding the actual production and improving the quality of cigarette processing.

    参考文献
    相似文献
    引证文献
引用本文

唐军,唐丽,文里梁,等.烟叶松散回潮工艺参数和出料质量的贝叶斯网络模型构建与预测[J].食品与机械,2020,(9):207-210.
TANG Jun, TANG Li, WEN Li-liang, et al. Construction and prediction of Bayesian network model of relationship between process parameters and discharge quality in loosening and conditioning[J]. Food & Machinery,2020,(9):207-210.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。