基于模糊神经网络PID控制的花茶烘焙温控系统设计
CSTR:
作者:
作者单位:

作者简介:

陈星(1977—),男,南京信息职业技术学院讲师,工程硕士。E-mail:1025195472@qq.com

通讯作者:

中图分类号:

基金项目:


Design of tea baking temperature control system based on fuzzy neural network PID control
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对花茶烘焙时对温度的精细化要求,提出由模糊控制、神经网络和PID组合算法构成的控制系统,实现对温、湿度的可靠控制,达到对鲜花快速去湿干燥的目的。系统将温度和湿度的误差e和误差率ec作为输入变量进行模糊化处理,确立隶属度函数,通过模糊推理和解模糊化生成输出量,为PID控制系统提供优化的调控因子△K,精准控制执行单元。系统采用RBP神经网络算法对模糊控制过程进行精细实时变量调控,以Delta(δ)函数和梯度下降算法为学习规则调整网络加权系数w、中心向量cij和基宽向量bij。系统利用Matlab软件进行数据仿真,对比传统PID控制和模糊控制,验证模糊神经网络PID组合控制的优越性,数据分析表明组合控制系统对温度的响应速度和数据的精确性都明显改善,扰动补偿和抗干扰能力有效提高,系统鲁棒性更好。

    Abstract:

    Aiming at the refined requirements of temperature in the process of scented tea baking, a control system composed of fuzzy control, neural network and PID algorithm was proposed to realize the reliable control of temperature and humidity and to achieve the purpose of rapid dehumidification and drying of flowers. The system taken the temperature and humidity error e and error rate ec as input variables for fuzzy processing, established membership function, through fuzzy reasoning and fuzzy production into the output, for PID control system to provide optimal regulatory factor △K, accurate control of the executive unit. The system adopts RBP neural network algorithm to fine-tune the real-time variables in the fuzzy control process, and USES Delta (δ) function and gradient descent algorithm to adjust the network weighting coefficient w, central vector cij and base-width vector bij as learning rules. Data simulation system by using Matlab software, compare the traditional PID control and fuzzy control, and verify the superiority of the combination of fuzzy neural network PID control, the data analysis shows that the combination of temperature control system response speed and the accuracy of the data are obviously improved, the disturbance compensation and improve anti-jamming capability, and it has better robustness.

    参考文献
    相似文献
    引证文献
引用本文

陈星.基于模糊神经网络PID控制的花茶烘焙温控系统设计[J].食品与机械,2020,(9):131-137.
CHEN Xing. Design of tea baking temperature control system based on fuzzy neural network PID control[J]. Food & Machinery,2020,(9):131-137.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。