基于U型卷积神经网络的羊肋排图像分割
CSTR:
作者:
作者单位:

作者简介:

赵世达,男,华中农业大学在读博士研究生

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(编号:2018YFD0700804)


Image segmentation of sheep ribs based on U-shaped convolutional neural network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以羊肋排为研究对象,提出了一种基于U型卷积神经网络的羊肋排图像分割算法。采集羊肋排样本图像,利用图像增广技术扩充图像数据,经归一化后,建立羊肋排图像数据集;建立羊肋排图像分割模型U-Net,以卷积和池化运算提取肋排特征,融合肋排的深层特征和浅层特征,经多次反卷积操作实现融合特征的精准定位,得到肋排区域的二值图像,从而实现端到端的图像语义分割;引入精度(PA)、均像素精度(MPA)、平均交并比(MIoU)3种图像语义分割评判标准判断网络的分割性能。试验结果表明:U-Net分割肋排图像PA、MPA、MIoU分别为92.38%,88.52%,84.26%。比较现有的3种经典图像语义分割方法SegNet、FCN8s、FCN32s,U-Net平均交并比(MIoU)较上述3种方法分别高出6.47%,15.34%,25.86%,且处理单幅肋排图像的时间比次优的SegNet缩短48 ms。针对劈半羊胴体图像数据集,U-Net的MIoU为75.57%。

    Abstract:

    Accurate identification of lamb rib area is an important content in the research of sheep carcass intelligent cutting equipment. Aiming at the problem that the color, texture and other characteristics of the carcass of the split half sheep are not obvious, and it is difficult to achieve accurate segmentation of the rib area, this paper takes the sheep rib as the research object, and proposes a sheep rib based on U-shaped convolution neural network Row image segmentation algorithm. First, collect sample images of lamb ribs, used image augmentation technology to expand the image data, and after normalization, established a lamb rib image data set. Then, the U-Net sheep segmentation image segmentation model was established, and the rib features were extracted by convolution and pooling operations, and the deep and shallow features of the rib were merged. After multiple deconvolution operations, accurate positioning of the fused features was achieved. Obtained the binary image of the rib area, so as to achieve end-to-end semantic segmentation of the image. Finally, three image semantic segmentation evaluation criteria, including accuracy (PA), average pixel accuracy (MPA), and average cross merge ratio (MIoU), were introduced to judge the segmentation performance of the network. The experimental results showed that the U-Net segmentation rib images PA, MPA, and MIoU were 92.38%, 88.52%, and 84.26%, respectively. Comparing the existing three classical image semantic segmentation methods SegNet, FCN8s, FCN32s, the U-Net average merge ratio (MIoU) were 6.47%, 15.34%, 25.86% higher than the above three methods, respectively. The image time was 48 ms shorter than the sub-optimal SegNet. For the half-sheep carcass image dataset, the MIoU of U-Net was 75.57%.

    参考文献
    相似文献
    引证文献
引用本文

赵世达,王树才,李振强,等.基于U型卷积神经网络的羊肋排图像分割[J].食品与机械,2020,(9):116-121,154.
ZHAO Shi-da, WANG Shu-cai, LI Zhen-qiang, et al. Image segmentation of sheep ribs based on U-shaped convolutional neural network[J]. Food & Machinery,2020,(9):116-121,154.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-18
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。