基于机器视觉的苹果在线分级
CSTR:
作者:
作者单位:

作者简介:

李颀(1973—),女,陕西科技大学教授,博士。E-mail:67478678@qq.com

通讯作者:

中图分类号:

基金项目:

陕西省农业主导产业发展项目(编号:201806117YF05NC13[1]);陕西省科技厅农业科技攻关项目(编号:2015NY028)


Research on apple online classification based on machine vision
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    通过CCD相机动态采集苹果两个面的实时图像,提出了泛洪填充+自适应Ostu阈值分割算法提取苹果的轮廓,采用最小外接圆法对苹果上表面图像进行处理得到苹果果径,采用最小外接矩形法对苹果侧表面图像进行处理提取苹果果形特征;将图像进行RGB到HSV空间转换,提取苹果的着色度、果锈,以及疤痕特征,采用基于改进粒子群算法的SVM决策树的分类方法进行苹果的分级。结果表明,该方法对特级果、一级果、二级果和等外果的识别准确率分别达96%,94%,98%,98%,分级速率达4个/s,可以满足苹果在线分级的要求。

    Abstract:

    Using CCD camera to dynamically collect real-time images of two sides of the apple, a flood filling + adaptive Ostu threshold segmentation algorithm is proposed to extract the outline of the apple. The minimum outer circle method is used to process the upper surface image of the apple to obtain the fruit diameter of the apple. Rectangular method is used to extract the apple's fruit shape features by processing the apple's side surface image; the image is converted from RGB to HSV space to extract the apple's coloring degree, fruit rust, and scar features, and the classification of the SVM decision tree based on the improved particle swarm algorithm Method for grading apples. The experimental results show that the recognition accuracy rates of extra-grade fruits, first-grade fruits, second-grade fruits and other outer fruits have reached 96%, 94%, 98% and 98%, respectively, and the classification rate has reached 4 s 1, which can satisfy the requirement for online-grading apples.

    参考文献
    相似文献
    引证文献
引用本文

李颀,胡家坤.基于机器视觉的苹果在线分级[J].食品与机械,2020,(8):123-128,153.
LI Qi, HU Jia-kun. Research on apple online classification based on machine vision[J]. Food & Machinery,2020,(8):123-128,153.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。