基于电子舌及一维深度CNN-ELM模型的普洱茶贮藏年限快速检测
CSTR:
作者:
作者单位:

作者简介:

杨正伟,男,山东理工大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

山东省自然科学基金(编号:ZR2019MF024);国家自然科学基金(编号:61701286);教育部科技发展中心产学研创新基金(编号:2018A02010);赛尔网络下一代互联网技术创新项目(编号:NGII20170314)


A fast detection Pu-erh tea storage based on the voltammetric electronic tongue and one-dimension CNN-ELM
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用伏安电子舌对不同贮藏年限的普洱茶进行快速检测。将深度学习技术引入到电子舌的模式识别中,提出一种基于一维卷积神经网络(1-D CNN)与极限学习机(ELM)组合的模式识别模型(1-D CNN-ELM)。采用该模型结合伏安电子舌对5种不同贮藏年限的普洱茶进行分类鉴别,结果表明,与传统基于离散小波变换(DWT)结合支持向量机(SVM)或极限学习机(ELM)的模型相比,1-D CNN-ELM对普洱茶贮藏年限的分类效果更优,其测试集准确率、精确率、召回率和F1-Score分别达到98.32%,98.0%,98.0%,0.98。试验表明深度学习方法适用于对电子舌信号进行模式识别处理,且具有较高的分类准确性和泛化能力。

    Abstract:

    Pu-erh tea storage year detection has the problems of cumbersome operation and complicated evaluation process. On this basis, a voltammetric electronic tongue (VE-Tongue) came out for fast detection of different storage years of Pu-erh tea. Conventional pattern recognition method of VE-Tongue was mainly based on manual feature design combined with shallow machine learning algorithms. In this study, a deep learning algorithm was introduced into pattern recognition method of VE-Tongue. A hybrid pattern recognition method based on combination of one-dimension convolutional neural network (1-D CNN) and extreme machine learning (ELM) was proposed. The 1-D CNN-ELM model combined with VE-Tongue was utilized to distinguish Pu-erh tea with five different storage years. The result showed that compared with traditional models based on discrete wavelet transform (DWT) combining with support vector machine (SVM) or extreme machine learning, 1-D CNN-ELM model gained better classification performance, in which the accuracy, precision, recall and F1-Score were 98.32%, 98.0%, 98.0% and 0.98 respectively. This experiment illustrated that deep learning algorithm was suitable for pattern recognition dispose of VE-Tongue signal and could obtained superior classification accuracy and generalization ability.

    参考文献
    相似文献
    引证文献
引用本文

杨正伟,张鑫,李庆盛,等.基于电子舌及一维深度CNN-ELM模型的普洱茶贮藏年限快速检测[J].食品与机械,2020,(8):45-52.
YANG Zheng-wei, ZHANG Xin, LI Qing-sheng, et al. A fast detection Pu-erh tea storage based on the voltammetric electronic tongue and one-dimension CNN-ELM[J]. Food & Machinery,2020,(8):45-52.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。