基于改进粒子群算法的鸡蛋裂纹检测方法
CSTR:
作者:
作者单位:

作者简介:

张健(1980—),男,黄淮学院副教授,硕士。E-mail:hhzhj@foxmail.com

通讯作者:

中图分类号:

基金项目:

河南省科技发展计划项目(编号:202102110267)


Egg crack detection based on improved particle swarm optimization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对鸡蛋裂纹存在复杂性、微小性等问题,采用改进粒子群算法以提高检测效果。通过余弦函数调节惯性权重,在搜索前期具有较大值,后期具有较小值进行寻优;粒子反向学习防止落入极值陷阱,提高了优化效率;自适应阈值对鸡蛋图像分割,可变中值滤波窗口进行鸡蛋图像表面暗斑去除,非完全Beta函数对鸡蛋裂纹增强;给出了鸡蛋裂纹检测流程。仿真显示:试验算法对鸡蛋网状裂纹、线形裂纹图像均能检测出来,并且裂纹边缘清晰,明显的线形裂纹、网状裂纹正确检测率分别为96.4%,94.7%,非明显的线形裂纹、网状裂纹正确检测率分别为89.2%,87.5%,高于其他算法。

    Abstract:

    Aiming at the problems of complexity and minuteness of egg crack detection, the improved particle swarm optimization algorithm is proposed in order to improve the detection effect. Firstly, the inertia weight was adjusted with cosine function, having the large value in the early stage and small value in the later stage. Secondly, particle reverse learning was prevented from falling into the extreme value trap, and the optimization was improved efficiently. Thirdly, adaptive threshold was segmented the egg image, variable median filter window was removed the dark spots on the egg image surface, and incomplete Beta function was enhanced the image. Finally, the process was given. The experimental simulation shows that improved particle swarm optimization algorithm would detect the reticular crack and linear crack, and the edge of the cracks are clear, with correct detection rates of obvious linear and reticular cracks of 96.4% and 94.7%, and correct detection rates of non obvious linear and reticular cracks of 89.2% and 87.5%, respecitiveley which are higher than other algorithms.

    参考文献
    相似文献
    引证文献
引用本文

张健,崔英杰.基于改进粒子群算法的鸡蛋裂纹检测方法[J].食品与机械,2020,(7):136-139,226.
ZHANG Jian, CUI Ying-jie. Egg crack detection based on improved particle swarm optimization[J]. Food & Machinery,2020,(7):136-139,226.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。