基于表面增强拉曼光谱与二维相关光谱法检测鸡肉中恩诺沙星残留
CSTR:
作者:
作者单位:

作者简介:

班晶晶,女,宁夏大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(编号:31560481,75002108A1651)


Detection of Enrofloxacin residues in chicken based on surface enhanced Raman spectroscopy and two-dimensional correlation spectroscopy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用表面增强拉曼光谱(SERS)技术结合二维相关光谱法(2D-COS)对鸡肉中恩诺沙星的拉曼光谱进行特征变量优选,使用偏最小二乘回归法(PLSR)建立恩诺沙星特征峰分析模型,并与竞争性正自适应加权算法(CARS)进行比较。结果表明,2D-COS-PLSR模型效果最优,其Rc、Rp分别为0.979 7,0.997 2,说明采用2D-COS 优选鸡肉中恩诺沙星浓度相关的特征谱峰是可行的。

    Abstract:

    The surface-enhanced Raman spectroscopy (SERS) technology and the two-dimensional correlation spectroscopy (2D-COS) were used to optimize the characteristic variables of the Enrofloxacin in chicken meat. The partial least squares regression method (PLSR) was used to establish Enro the characteristic peak analysis model of sand star was compared with the competitive positive adaptive weighting algorithm (CARS). The results showed that the 2D-COS-PLSR model has the best effect, and its Rc and Rp were 0.979 7, 0.997 2 respectively, which shows that it is feasible to use 2D-COS to optimize the characteristic spectral peaks related to the concentration of enrofloxacin in chicken.

    参考文献
    相似文献
    引证文献
引用本文

班晶晶,刘贵珊,何建国,等.基于表面增强拉曼光谱与二维相关光谱法检测鸡肉中恩诺沙星残留[J].食品与机械,2020,(7):55-58.
BAN Jing-jing, LIU Gui-shan, HE Jian-guo, et al. Detection of Enrofloxacin residues in chicken based on surface enhanced Raman spectroscopy and two-dimensional correlation spectroscopy[J]. Food & Machinery,2020,(7):55-58.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。