基于机器视觉和机器学习的羊骨架自动分割方法
CSTR:
作者:
作者单位:

作者简介:

李振强,男,华中农业大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

国家重点研发计划(编号:2018YFD0700800,2018YFD0700804)


The calculation methods of goat trunk’s segmentation trajectory based on machine vision and machine learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为实现羊骨架自动化加工,提出一种基于机器视觉和机器学习技术的羊骨架自动分割方法。采集396组羊骨架样本,利用图像处理技术提取24组坐标参数,分别为羊骨架躯体、腰椎、颈部和胸腔等4个部位最小外接矩形的6个特征点(中心、质心和4个顶点坐标)。通过显著性检验筛选出16组特征,进行异常值检测和归一化操作, 按7∶3的比例划分训练集和测试集。对比Lasso、Ridge、SVR和GBDT机器学习模型预测效果,优选Lasso、SVR和GBDT作为个体学习器,以0.30∶0.25∶0.45的权重集成时,模型预测效果最优,均方根误差为7.93。在验证集上坐标残差绝对平均值为2.32像素点,拟合度R2为0.961,在测试集上坐标残差绝对平均值为2.53像素点,拟合度R2为0.947,测试表明模型预测精度较高且泛化能力较强。搭建多关节机器人平台进行分割试验,轨迹预测精度达到3.4 mm,理论效率达413只/h,约提升了37.9%,表明该方法有效可行且效率显著提升。

    Abstract:

    An automated segmentation method of goat trunk with machine vision and machine learning was proposed. 396 images of goat trunk were acquired randomly in a goat slaughtering plant by using two industrial cameras. 24 sets of feature parameters were extracted by image processing. The characteristic parameters included the center (O), the centroid (Q) and the four vertex coordinates (ABCD) of the minimum circumscribed rectangle corresponding to the four parts of the body. 16 groups of characters were selected by significance test. The data was preprocessed with abnormal value detection and normalization methods. The hierarchical sampling method is used to divide the training and test set to 7∶3. The models such as Lasso, Ridge, SVR and GBDT in auto-sklearn are selected as individual learning cell. The automatic integrated learning algorithm is designed and constructed with Bayesian optimization method. When Lasso, SVR and GBDT are integrated with a weight of 0.30∶0.25∶0.45, the model predicts best. Finally, the MSE and R2 scored 7.93 and 0.961, on test set. The experiment was carried out on a multi-joint robot. The error is 3.4 mm and the theoretical reached 413 units per hour,which increased by 37.9%. The results indicate that the method is effective and feasible.

    参考文献
    相似文献
    引证文献
引用本文

李振强,王树才,赵世达,等.基于机器视觉和机器学习的羊骨架自动分割方法[J].食品与机械,2020,(6):125-132.
LI Zhen-qiang, WANG Shu-cai, ZHAO Shi-da, et al. The calculation methods of goat trunk’s segmentation trajectory based on machine vision and machine learning[J]. Food & Machinery,2020,(6):125-132.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-17
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。