基于电子鼻与LightGBM算法判别葡萄酒品种的研究
CSTR:
作者:
作者单位:

作者简介:

乔淼,女,河北工业大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:


Research on discriminating wine varieties based on electronic nose and LightGBM algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对葡萄酒的鉴别问题,通过电子鼻采集7种葡萄酒的气味信息,应用LightGBM算法对葡萄酒的气味特征进行学习,并运用TPE超参数优化算法对LightGBM算法超参数进行自适应寻优,以5折交叉验证为指标评估模型的性能。试验结果表明LightGBM建立的判别模型对葡萄酒样本的判别准确率为96.62%,优于传统的支持向量机、随机森林、神经网络,验证了LightGBM在葡萄酒品种鉴别中的优越性。

    Abstract:

    Aiming at the problem of wine identification, the odor information of 7 kinds of wine was collected through the electronic nose, the LightGBM algorithm was used to learn the odor characteristics of the wine, and the TPE hyperparameter optimization algorithm is used to adaptively optimize the HyperGB parameter of the LightGBM algorithm. Verification is an indicator to evaluate the performance of the model. The experimental results showed that the discrimination model established by LightGBM had a 96.62% accuracy rate for wine samples, which was superior to traditional support vector machines, random forests, and neural networks. It verifies the superiority of LightGBM in wine variety identification and provides wine identification a fast, reliable and effective analysis method is also suggested, and more excellent algorithms can be introduced into the field of wine smell data mining machines.

    参考文献
    相似文献
    引证文献
引用本文

乔淼,张磊,母芳林.基于电子鼻与LightGBM算法判别葡萄酒品种的研究[J].食品与机械,2020,(5):76-79.
QIAO Miao, ZHANG Lei, MU Fang-lin. Research on discriminating wine varieties based on electronic nose and LightGBM algorithm[J]. Food & Machinery,2020,(5):76-79.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-15
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。