改进YOLOv3算法的筷子毛刺缺陷检测方法
CSTR:
作者:
作者单位:

作者简介:

陈俊松,男,昆明理工大学在读硕士研究生

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(编号:61761024,61461022)


Defect detection method of chopsticks based on improved YOLOv3 algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对目前筷子质量检测机器并不能对带有毛刺的筷子进行有效分拣这一问题,提出了一种基于改进YOLOv3算法的筷子毛刺缺陷检测方法。通过删除YOLOv3网络多尺度检测中的32倍降采样的检测层,在YOLOv3网络中增加4倍降采样层,进一步得到深层特征并与第二次下采样中的浅层特征进行融合,让网络同时学习深层和浅层特征、重新聚类anchor box尺寸、改变YOLOv3网络的超参数,如减小抖动、减小权重衰减正则项、增大批尺寸、选择合适的动量值等方法,对原网络进行改进。当交并比(IOU)为50时改进后网络的平均检测精度由89%提升到了94%,查准率提高了4%,查全率提高了9%,平均IOU提高了3.5%,平均检测速度由16.8帧/s增加到了21.0帧/s。试验结果表明,该方法相对于传统筷子质检机具有更高的检测效率,能满足筷子毛刺缺陷的检测需求。

    Abstract:

    The current chopstick quality inspection machines on the market cannot effectively sort chopped chopsticks with burrs. Aiming at this problem, in this paper, a method for detecting burr defects of chopsticks based on improved YOLOv3 algorithm is proposed. By removing the 32x down-sampling detection layer in the YOLOv3 network multi-scale detection, adding a 4x down-sampling layer in the YOLOv3 network to further obtain deep features. Thereafter, it was fused with the shallow features in the second down-sampling, and let the network learn the deep and shallow features and re-cluster the anchor box size, with changing the hyper-parameters of the YOLOv3 network, including reducing jitter and the weight-decay regular term, and increasing the batch size. Finally, a suitable momentum value was selected to improve the original network. When IOU=50, the average detection accuracy of the improved network increased from 89% to 94%, and the accuracy rate increased by 4%, with the recall rate increasing by 9% and the average IOU increasing by 3.5%. The average detection speed increased from 16.8 to 21.0 frames per second. The experimental results showed that the method in this study had higher detection efficiency than the traditional chopstick quality inspection machine, which could meet the detection needs of chopstick burr defects.

    参考文献
    相似文献
    引证文献
引用本文

陈俊松,何自芬,张印辉.改进YOLOv3算法的筷子毛刺缺陷检测方法[J].食品与机械,2020,(3):133-138.
CHEN Jun-song, HE Zi-fen, ZHANG Yin-hui. Defect detection method of chopsticks based on improved YOLOv3 algorithm[J]. Food & Machinery,2020,(3):133-138.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-16
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。