基于改进神经网络算法的蔬菜图像识别
CSTR:
作者:
作者单位:

作者简介:

芦范(1982—),女,商丘职业技术学院讲师,硕士。E-mail:2373984110@qq.com

通讯作者:

中图分类号:

基金项目:

河南省政府决策研究招标课题(编号:2008B157)


Vegetable image recognition based on improved neural network algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    文章提出了改进神经网络算法,建立了径向基函数神经网络模型,包括梯度下降方法求解权重参数,增大邻域半径的均值聚类方法求取隐函数中心值,利用相邻聚类中心获得核宽度,通过量子遗传算法删除冗余权重和神经元;提取了蔬菜图像的特征,并给出了算法流程。仿真试验表明,试验算法对蔬菜图像的形状特征平均识别率为97.56%,纹理特征平均识别率为95.60%,颜色特征平均识别率为93.25%,训练时间平均为5.83 s、识别时间平均为2.18 s,优于其他算法。

    Abstract:

    In order to improve the effect of vegetable image recognition, a neural network algorithm was proposed. Firstly, radial basis function neural network model was established, including gradient descent method for solving the weight parameters. K-means clustering method increasing the radius of neighborhood was calculated implicit function center value, and the nuclear width was used adjacent cluster centers. Secondly, quantum genetic algorithm was deleted the redundant weights and neuron. Thirdly, vegetable image feature extraction was extracted. Finally, the process was given. The simulation results showed that the average recognition rate of shape feature was 97.56%, and the texture feature was 95.60%. Moreover, the color feature was found 93.25%, after trained for 5.83 s, and the average recognition time was 2.18 s. The algorithms we reported here was found better than other kinds.

    参考文献
    相似文献
    引证文献
引用本文

芦范.基于改进神经网络算法的蔬菜图像识别[J].食品与机械,2020,(2):146-150.
LU Fan. Vegetable image recognition based on improved neural network algorithm[J]. Food & Machinery,2020,(2):146-150.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2023-02-16
  • 出版日期:
文章二维码
×
《食品与机械》
友情提示
友情提示 一、 近日有不少作者反应我刊官网无法打开,是因为我刊网站正在升级,旧网站仍在百度搜索排名前列。请认准《食品与机械》唯一官方网址:http://www.ifoodmm.com/spyjx/home 唯一官方邮箱:foodmm@ifoodmm.com; 联系电话:0731-85258200,希望广大读者和作者仔细甄别。